削除された内容 追加された内容
編集の要約なし
8行目:
|-
|1
|<span style="white-space:nowrap;">[[#IEEE 802.11|IEEE 802.11]]</span>||1997年6月||[[スペクトラム拡散#直接拡散|DSSS]], [[スペクトラム拡散#周波数ホッピング|FHSS]]||2.4 - 2.5GHz5 GHz||2Mbps2 Mbps||1||22MHz22 MHz||免許不要
|-
|rowspan="2"|2
|<span style="white-space:nowrap;">[[#IEEE 802.11a|IEEE 802.11a]]</span>||1999年10月||[[直交周波数分割多重方式|OFDM]]||5.15 - 5.35GHz35 GHz<br />5.47 - 5.725GHz725 GHz||54Mbps54 Mbps||1||20MHz20 MHz||5.15 - 5.35GHz35 GHz: 屋内の利用に限り免許不要<br />5.47 - 5.725GHz725 GHz: 屋内外に限らず免許不要
|-
|<span style="white-space:nowrap;">[[#IEEE 802.11b|IEEE 802.11b]]</span>||1999年10月||DSSS/CCK||2.4 - 2.5GHz5 GHz||11Mbps11 Mbps / 22Mbps22 Mbps||1||22MHz22 MHz||免許不要
|-
|rowspan="2"|3
|<span style="white-space:nowrap;">[[#IEEE 802.11g|IEEE 802.11g]]</span>||2003年6月||OFDM||2.4 - 2.5GHz5 GHz||54Mbps54 Mbps||1||20MHz20 MHz||免許不要
|-
|[[#IEEE 802.11j|IEEE 802.11j]]||2004年12月||OFDM||4.9 - 5.0GHz0 GHz<br />5.03 - 5.091GHz091 GHz||54Mbps54 Mbps||1||20MHz20 MHz||要免許、電力など一定制限内の端末のみ免許不要
|-
|4
|[[#IEEE 802.11n|IEEE 802.11n]]||2009年9月||OFDM||2.4 - 2.5GHz5 GHz<br />5.15 - 5.35GHz35 GHz<br />5.47 - 5.725GHz725 GHz||65Mbps65 Mbps - 600Mbps600 Mbps||1 - 4||20/40MHz40 MHz||製品によって上限の公称速度が異なり、最小では65Mbps65 Mbps、最大では600Mbps600 Mbpsである。<br />2.4GHz4 GHz帯: 屋内外に限らず免許不要<br />5.15 - 5.35GHz35 GHz: 屋内の利用に限り免許不要<br />5.47 - 5.725GHz725 GHz: 屋内外に限らず免許不要
|-
|rowspan="2"|5
|[[#IEEE 802.11ac (Wi-Fi5Fi 5)|IEEE 802.11ac]]||2014年1月||OFDM||5.15 - 5.35GHz35 GHz<br />5.47 - 5.725GHz725 GHz||292.5Mbps5 Mbps - 6.93Gbps93 Gbps||1 - 8||80/160MHz160 MHz||5.15 - 5.35GHz35 GHz: 屋内の利用に限り免許不要<br />5.47 - 5.725GHz725 GHz: 屋内外に限らず免許不要
|-
|[[#IEEE 802.11ad|IEEE 802.11ad]]||2013年1月||シングルキャリア/OFDM||57 - 66GHz66 GHz||4.6Gbps6 Gbps - 6.8Gbps8 Gbps|| - ||最大9GHz9 GHz||免許不要
|-
|6
33行目:
|
|
|9.6Gbps6 Gbps
|
|
45行目:
|802.11||伝送規格||1997年6月||MACと周波数ホッピング及び直接シーケンスの変調方式を定義。DSSS方式。
|-
|802.11a||伝送規格||1999年10月||5GHz5 GHz帯でOFDMを用いることにより、54Mbps54 Mbpsを実現した規格。2番目の物理層標準だが、製品化されたのは2000年後半。
|-
|802.11b||伝送規格||1999年10月||3番目の標準だが製品として発売されたのは2番目。DSSS/CCK方式。
53行目:
|802.11d||||||電波規制が異なる国間を移動する場合の手続きを策定
|-
|802.11e||QoS関連規格||2005年11月||MACのサービス品質 (QoS) の拡張を制作
|-
|802.11F||||||[[アクセスポイント間プロトコル]] (IAPP)
|-
|802.11g||伝送規格||2003年||ISM帯のネットワークを使用する物理層仕様。2.4GHz4 GHz帯にOFDM方式を適用。
|-
|802.11h||各国の法規||||802.11aと欧州の電波放出規則の互換性を維持するための標準
69行目:
|802.11m||メンテナンス||||802.11a, 802.11b, 802.11d, TGcの変更を802.11本体の仕様書に取り込むタスクグループ。mはメンテナンスの意味。
|-
|802.11n||伝送規格||||2.4GHz4 GHz5GHz5 GHzに互換性を持ち、MAC層において100Mbps100 Mbpsを上回る高スループットを実現。40MHz40 MHz幅・4×4MIMOをサポート。
|-
|802.11p||応用|| ||自動車で802.11を応用するタスクグループ。[[ETC]]などで用いられる。
86行目:
|ビデオの伝送
|-
|802.11ac||伝送規格||2014年1月||5GHz5 GHz帯を利用し、最大6.93Gbps93 Gbpsを実現するための規格。160MHz160 MHz幅, 8×8MIMOをサポート。
|-
|802.11ad||伝送規格||2012年12月||60GHz60 GHz帯を利用し、7Gbps7 Gbpsを超えるスループットを実現。2.1GHz1 GHz幅をサポート。
|-
|802.11af|| || ||[[ホワイトスペース (電波)|TVホワイトスペース]]
|-
|802.11ah|| || ||1GHz1 GHz以下のセンサーネットワーク、スマートメータリング。11acをベースに、IoT向けに1MHz1 MHz幅をサポート。
|-
|802.11ai|| || ||10ms10 msで高速接続(高速初期リンクセットアップ)
|-
|802.11aj
|
|
|802.11adを中国向けに拡張。45GHz45 GHz帯を含む。
|-
|802.11ak
114行目:
|
|
|高密度環境における周波数利用効率の向上。OFDMAを適用。8GHz8 GHz幅、MU-MIMOサポート。
|-
|802.11ay
|
|
|60GHz60 GHz帯を利用し20Gbps20 Gbpsを実現するための規格。802.11adを拡張。
|-
|802.11az
147行目:
 
=== 国ごとで利用可能なチャンネル ===
2.4GHz4 GHz
{| class="wikitable"
!チャンネル
241行目:
|}
 
5GHz5 GHz
{| class="wikitable"
!チャンネル
404行目:
|}
 
60GHz60 GHz
{| class="wikitable"
!チャンネル
436行目:
英語では "I triple E eight O two dot eleven"(アイトリプルイー エイトオーツー ドット イレブン)という形で発音され、省略する場合には単に "dot eleven"(ドットイレブン)と呼称される規格である。[[日本語]]では「はちまるにい てん いちいち」と呼ばれることが多い。1997年にIEEEで最初に規格統一された無線LAN規格。
 
物理レイヤ規格とMACレイヤ規格から主に構成され、一つのMACレイヤ規格で複数の物理レイヤ規格をサポートするのが特徴である。2.4GHz4 GHz帯の無線だけでなく、赤外線の物理レイヤもサポートする規格。具体的には物理レイヤとして、[[スペクトラム拡散]]のうち周波数ホッピング方式 (FHSS) のもの、直接拡散方式 (DSSS) のもの、および赤外線方式のものの3種類が規定されている。伝送速度は物理レイヤでの理論値1M1 M2M2 M[[ビット毎秒|bps]]を実現。
 
MACレイヤについては[[CSMA/CA]] (Carrier Sense Multiple Access with Collision Avoidance) 方式を用いているのが特徴である。CSMA/CA方式は "Listen Before Talk" 方式であり、人間に例えると「話す前に聞け」という原理に基づくアクセス制御方式である。すなわち、自分がパケット信号を送信しようと思ったならば、まずはアンテナで他の装置がパケット信号を出していないかどうかを、良く確かめてから送信するという極めて単純な機構を採用したアクセス制御方式である。CSMA/CA方式は2.4GHz4 GHz帯のように干渉を互いに与えない範囲での独立なチャネルが4チャネルしか取れない場合に、自分以外のアクセスポイント(親局)が自律分散的(つまり隣近所と事前の計画的なチャネル設定等を行わずに)に動作させる上で、簡単かつ実際的なアクセス制御方式であり、この後に繋がる一連の無線LAN発展の基礎をなす概念である。
 
暗号化技術としては[[Wired Equivalent Privacy|WEP]]の利用が想定されていた。
 
== IEEE 802.11a ==
1997年に成立したIEEE 802.11規格の無線LANは伝送速度が最大2Mbps2 Mbpsであり、それを高速化するための標準化が1997年から行われた。2.4GHz4 GHz帯ではIEEE 802.11b規格、5GHz5 GHz帯ではIEEE 802.11a規格の審議が行われた。11b規格では従来の11規格との互換性が求められての標準化であったが、11a規格は互換性にとらわれることも無く当時の最新技術を用いた物理レイヤ技術の検討が行われ、パケットモード[[直交周波数分割多重方式|OFDM]] (Orthogonal Frequency Division Multiple) 方式による物理レイヤ規格(最大54Mbps)54 Mbps)が1999年に成立した。IEEE 802.11aを使用した実際の商品は[[2002年]]頃に登場した。登場当初、11b(Wi11b (Wi-Fi)Fi) と対比する名称として「Wi-Fi5Fi 5」という名称が使われることもあった<ref>[http://www.kumikomi.net/article/news/2002/05/27_02.php アジレント・テクノロジー,無線LANの相互接続性に関する認定機関を開設] - Tech Village・2002年5月27日</ref>。
 
米国では、当初から5GHz5 GHz帯で屋内外双方で利用できる周波数帯が割り当てられた。一方[[日本]]では、当初5.15 - 5.25GHz25 GHz帯の周波数が、無線LANにも利用可能とはなっていたが、移動体衛星通信システムにも利用されているため、[[電波法]]によって屋外での利用が禁止されている。なお、[[自動車]]や[[列車]]内、[[航空機]]などの乗り物内での利用はこの限りではない<ref>[https://www.tele.soumu.go.jp/j/sys/others/wlan_outdoor/index.htm 総務省電波利用ホームページ|その他|無線LANの屋外利用について] - 総務省・2020年2月21日</ref>。その後、5.15 - 5.25 GHzに加えて4.9 - 5 GHz(屋外用ライセンスバンド)、5.25 - 5.35 GHz(屋内用アンライセンスバンド)が日本では追加された。今後は2.4 GHz帯が混雑するにつれてより[[帯域幅]]の広い5 GHz帯への移行が進むものと思われる
その後、5.15 - 5.25GHzに加えて4.9 - 5GHz(屋外用ライセンスバンド)、5.25 - 5.35GHz(屋内用アンライセンスバンド)が日本では追加された。今後は2.4GHz帯が混雑するにつれてより[[帯域幅]]の広い5GHz帯への移行が進むものと思われる。
 
なおチャネル配置等に関して、日本が欧米での周波数割り当てと異なる部分について世界的に統合した規格にするため、新たに[[#IEEE 802.11j|IEEE 802.11j]]が規定された。11jのjは "Japan" の頭文字ではなく、アルファベット順で規格名が定められた時に偶然に "j" 番目になったにすぎない。
 
周波数に5GHz5 GHz帯を使うため、2.4GHz4 GHz帯の11b, 11g, 11nのような電子レンジの影響を受けにくい利点があるが、信号強度の空間伝搬損失は通信に使用する周波数の2乗に比例するため、2.4GHz4 GHz帯の11b, 11g, 11nの信号ほど遠くまで伝搬しない。
 
狭い帯域幅で高い転送速度を実現できたが、あまり普及しなかった。
458 ⟶ 457行目:
* J - 旧来の日本国内規格
* W - 国際標準準拠規格
* 数字 - 中心周波数(例:“53”は中心周波数が5.3GHz)3 GHz)
 
制度改正から[[2008年]](平成20年)[[5月]]ごろまでは、経過措置として“J52”(5.15 - 5.25GHz25 GHzにおけるチャネル配置)、“W52”並びに“W53”(5.15 - 5.35GHz35 GHzにおけるチャネル配置)の3つの規格の併存が認められ、チャネル変更に対応した無線LAN機器も順次発売され普及し始めている。しかし、規格に対応していても接続できないという事態がおこりうるので注意が必要となっている。
 
PCカードなどのクライアント側はすべての周波数 (J52, W52, W53) に対応できることになっていたが、無線ブロードバンドルータや[[アクセスポイント (無線LAN)|アクセスポイント]]など親機側では、新たにJ52対応の機器を販売することができなくなった。また、旧規格であるJ52にしか対応していない機器の一部では、ファームウェアを書きかえることで、W52に対応させる方法が取られた。ただし、メーカーによっては古い商品でのW52・W53対応のファームウェアを出さず、そのため、J52に対応していない機器とはそのようなアクセスポイントは通信できない。
468 ⟶ 467行目:
使用できるチャネル増加に伴い、同フロアに複数設置できる11aは、企業用途に向いていると思われていた。しかし、増加チャネル部分 (W53) はDFS(Dynamic Frequency Selection: [[動的電波周波数選択]])により[[気象レーダー]]との干渉を避けることが義務付けられており(干渉を検出した場合に回避動作を行う)、場合によっては通信の途絶等が起こり得るため、[[Quality of Service|品質]]や連続稼動性を要求される企業用途では不向きとされている{{誰2|date=2017年1月}}(W52では同様の動作は必須になっていない)。
 
[[2007年]](平成19年)[[1月]]の[[総務省]]省令改正により、"W56" (5.47 - 5.725GHz725 GHz) が使用可能になった。これによりチャネル数が8から19に大幅に増加した。W56であれば、免許が無くとも屋外で使用する事が出来る。ただし、W56も気象レーダーが使う帯域である為、W53と同等の制約がある。
 
経過措置が終了した[[2008年]](平成20年)[[6月]]以降は、新たに発売されるクライアント機器も“J52”への対応が禁じられ、“W5x”の国際標準準拠規格のみの対応となった。それ以前に発売され現在も販売が継続されている商品はこの限りでない。
 
2019年7月11日に改正総務省省令が公布され、W56に144chが追加となった。これにより140 + 144chのHT40/VHT40(40MHzVHT40(40 MHz)、132 + 136 + 140 + 144chのVHT80(80MHzVHT80(80 MHz)などの利用が可能となった。
 
{| class="wikitable"
502 ⟶ 501行目:
 
== IEEE 802.11b ==
正式には "IEEE 802.11 High-Rate Direct Sequence" と言う。IEEEの「802委員会」の中にある「ワーキンググループ11」の「タスクグループB」が策定した。2.4GHz4 GHzの[[ISMバンド|ISM帯]]と呼ばれる、免許不要で扱える周波数帯域を利用する。1997年 - 1999年にかけて規格審議が行われ、従来のIEEE 802.11規格と[[互換性]]を持たせて伝送速度を2Mbps2 Mbpsから最大11Mbps11 Mbpsに拡張した規格が成立した(オプション規定として22Mbps22 Mbpsのものもある)。技術としては、IEEE 802.11規格の3種類の物理レイヤ規格の中で直接拡散方式(DS方式)をベースにCCK (Complementary Code Keying) 方式を採用することにより高速度化を実現した。
 
11b規格は物理レイヤの規格であり、MACレイヤには従来のIEEE 802.11で規定されているMACレイヤ規格が採用されて製品化されている。1999年に規格が成立する直前に100ドルを切る無線LANカードが発売されたことにより、無線LAN市場が一気にブレイクする起爆剤になった規格である。[[パーソナルコンピュータ|パソコン]]関連として、もっとも初期に普及した[[無線LAN]]規格である。
 
日本国内で利用できるチャネル数は14である。すなわち[[中心周波数]]2.412GHz412 GHzの1chから同2.472GHz472 GHzの13chまで0.005GHz005 GHz (5MHz5 MHz) 刻みの1 - 13chと、同2,484MHz484 MHzの14chの、計14chである。ただし、一つのチャネル幅の規格が22MHz22 MHzであるため、干渉なしで通信できる最大チャネル数は4個となる。そして、その場合のチャネル設計は、1ch・6ch (2.437GHz437 GHz)・11ch (2.462GHz462 GHz)・14chである。しかし、11bでの14ch利用の合法性は日本に限られ、14chに対応しない親機・子機も多い。その場合、干渉なしで通信できる最大チャネル数は、規格上は11g同様の3個になる。しかし、規格より狭いチャネル幅で通信し、1ch・5ch・9ch・13chの計4チャネル同時利用を行える機種も市販されている。
 
== IEEE 802.11g ==
[[#IEEE 802.11b|IEEE 802.11b]]の上位互換規格として開発され、周波数はIEEE 802.11bと同じ2.4GHz4 GHz帯のISMバンドを利用する。
 
最大通信速度は54Mbps54 Mbpsで、IEEE 802.11bの11Mbps11 Mbps以上に高速化されている。これは5 5GHzGHz帯[[#IEEE 802.11a|IEEE 802.11a]]で確立された物理レイヤ規格である、OFDM([[直交周波数分割多重方式]])を用いて高速化を実現している。しかし、ISMバンドを利用しているため、他の機器(特に[[電子レンジ]]やコードレスホン)からの干渉を受ける可能性が高く、IEEE 802.11aに比べ実効速度は落ちる。
 
IEEE 802.11bに対する[[上位互換性|互換性]]を持っており、従来のIEEE 802.11b規格の機器が1台でもあると、IEEE 802.11bモードで動作するため大幅に速度が低下する。
 
利用可能なチャネルは、11bの1 - 13chと同じ帯域の計13チャネルである。チャネルは5MHz5 MHz間隔になっているが、1つのチャネル幅が規格上では20MHz20 MHzであるため、5ch以上あけないと干渉が発生してしまう。干渉なく通信するためには、同時に3つのチャネルしか利用できないことになる。もっとも、規格より狭いチャネル幅で通信し、1ch・5ch・9ch・13chの計4チャネル利用を行う機種も市販されている。
 
一部の製品では、802.11nでも採用されている「[[Multiple Input Multiple Output|MIMO]] (Multiple Input Multiple Output)」技術を先行して採用し、同一メーカー製のMIMO対応機器間に限り108Mbps108 Mbpsでの通信を可能としている。
 
== IEEE 802.11j ==
[[#IEEE 802.11a|IEEE 802.11a]]を日本向けに修正した規格である。
 
日本国内でデータ通信用として割当られた周波数のうち、IEEE 802.11aが使用する5.2GHz2 GHz付近の周波数は電波法によって屋外で使用出来ず、電波法の一部改正及び周波数及び割当により新たにデータ通信用として割当られた4.9 - 5.0GHz0 GHz用(屋外での利用も許可された。ただし届出制の免許が必要)に合わせIEEE 802.11aを修正したものがIEEE 802.11jである。
 
IEEE 802.11aの製品によっては、[[ファームウェア]]のアップグレードによりIEEE 802.11jに対応出来る可能性がある。屋外での利用が可能なことから業者による無線LAN機器間の通信として使われることが想定される。また、日本向けの規格だが、海外市場でもIEEE 802.11jに準拠した製品が発売される可能性がある。
 
4.9 - 5.0GHz0 GHz帯のうち一部の帯域は、一部地域において、[[2005年]][[11月]]に、[[無線アクセス]]としての利用が開放された。
 
jはJapanの頭文字を意味するものではなく、IEEE内のプロジェクト名として偶然割り当てられたものである。
 
4.9GHz9 GHz帯は他に使われている機器がないため電波干渉が少ない。また、電波法により利用局登録が必要であるが、屋内・屋外ともに使用可能である。取り付けアンテナにより、屋内用途に留まらず、屋外の離島間通信といった10km程度の通信用バックボーンとして[[デジタル・ディバイド]]解消への活用が期待されている。
 
; 諸元
:* 周波数帯:4900 : 4900MHzMHz - 5000MHz5000 MHz
:* チャンネル:4920 : 4920MHzMHz / 4940MHz4940 MHz / 4960MHz4960 MHz / 4980MHz4980 MHz の合計4ch
:* チャンネル間隔:20 : 20MHzMHz / 10MHz10 MHz / 5MHz5 MHz
:* 空中線電力:250 : 250mWmW (23.98dBm98 dBm) ※参考 電力デシベル表示 1mW1 mW = 0dBm0 dBm
 
本規格に対応した製品としては、[[日本無線]]から『JRL-749AP2』及び『JRL-749ST2』がリリースされている<ref>[http://www.jrc.co.jp/jp/whatsnew/20100126/index.html JRC日本無線 ニュース 2010.1.26 4.9GHz帯 無線LANブリッジ「JRL-749AP2/ST2」を受注開始 - 電波干渉が少なく、高品質な無線ネットワークを構築可能に-]</ref>。
 
== IEEE 802.11n ==
2.4GHz4 GHz/5GHz5 GHzの周波数帯域を用い、最大伝送速度600Mbps(40MHz600 Mbps(40 MHzチャネルボンディング、4ストリーム時)、実効速度で100Mbps100 Mbps以上の実現に向け策定された規格。
 
IEEE 802.11a/gに比べ、[[搬送波|サブキャリア]]の本数が増え、最大の符号化率も向上した<ref>サブキャリアの本数は52→56(52→56(ただしうち4本はパイロット信号用のため、実質的には48→52)48→52)に増え、最大の符号化率は3/4→5/6に向上した。これに伴い、最大伝送速度の理論値は52/48×48 × (5/6)/(3/4) = 65/54倍になった。</ref>。またオプションでショート[[ガードインターバル|GI]] (400ns400 ns) が利用できるようになった(IEEE(IEEE 802.11a/gでは800ns)800 ns)<ref>1シンボル当たりのデータ送信時間は3200ns3200 nsのため、このオプションを利用すれば、最大伝送速度の理論値はさらに(3200 + 800)/(3200 + 400) = 20/19倍になる。</ref>。また「[[Multiple Input Multiple Output|MIMO]] (Multiple Input Multiple Output)」を使用し(MIMOについては[[多元接続]]の項を参照)、複数のアンテナで送受信を行うこと(マルチストリーミング)や通信手順の見直し、複数のチャンネル(通信に用いられるバンド幅)を結合する[[チャネルボンディング]](チャンネル結合)などにより、高速化・安定化を実現する。[[#IEEE 802.11a|IEEE 802.11a]]や[[#IEEE 802.11b|IEEE 802.11b]]、[[#IEEE 802.11g|IEEE 802.11g]]との相互接続も可能。2006年3月にドラフト版1.0、2007年6月にドラフト版2.0が策定され、2009年9月に正式規格として認定された。
 
IEEE 802.11nの規格に適合していても、使用する周波数帯や同時に通信できるチャネル数(空間ストリーム数)、チャネルボンディングへの対応などは、個々の製品によって異なる。よって IEEE 802.11n対応の製品であっても最大通信速度は製品によって異なる上に、表記されている最大通信速度で利用できるかどうかも、製品の組み合わせに依存する。USB端子に接続する小型[[ドングル]]型の製品や、宿泊先のホテルで使用するために携帯性を重視した製品などでは、150Mbps150 Mbps程度の速度までの製品が多い。
 
周波数に5GHz5 GHz帯を使う場合、11a同様、電子レンジの影響を受けにくい利点があるが、信号強度の空間伝搬損失は通信に使用する周波数の2乗に比例するため、2.4GHz4 GHz帯の信号ほど遠くまで伝搬しない。
 
また、{{仮リンク|フレームアグリケーション|en|Frame aggregation}}と言う技術を採用している。[[データリンク層]](第二層)で、同一の宛先の[[フレーム (ネットワーク)|フレーム]]を連結して通信を行い、[[スループット]]を向上させる。ただし、フレーム長が長くなる分だけ[[通信路]]を占有することになる。
 
{| class="wikitable"
|+ IEEE 802.11n の最大通信速度(理論値)<ref name="legalprohibition">現地の電波法制により使用できる帯域幅やMIMOの使用に制限を受けるため、国や地域によっては対応する製品が市場投入されていなかったり、使用が禁止されている場合がある。</ref>
! 帯域幅 !! MIMO不使用 !! 2x2 MIMO使用 !! 3x3 MIMO使用
(オプション)
! 4x4 MIMO使用
(オプション)
|-
! 20MHz20 MHz
(必須)
| 72.2 (65.0) Mbps || 144.4 (130.0) Mbps || 216.7 (195.0) Mbps || 288.9 (260.0) Mbps
|-
! 40MHz40 MHz
(オプション)
| 150.0 (135.0) Mbps || 300.0 (270.0) Mbps || 450.0 (405.0) Mbps || 600.0 (540.0) Mbps
|}
([[変調方式]] [[直角位相振幅変調|64QAM]], 符号化率 5/6, [[ガードインターバル|GI]] 400 (800) nsの時)
 
日本国内においては電波法上の制限により当初の対応製品では20MHz20 MHzのバンド幅(1つのチャンネル)しか利用できなかったが、[[2007年]](平成19年)[[6月]]には電波法の一部改正が施行され、無線通信にて同時に使用できるバンド幅が従来の20MHz20 MHzから40MHz40 MHzに引き上げられた<ref>[http://itpro.nikkeibp.co.jp/article/NEWS/20070629/276222/ 総務省、無線LANを高速化するために電波法を改正] - [[ITpro]](2007年6月29日) 2013年11月15日閲覧。</ref>。これによりチャネルボンディング(デュアルチャネル、ワイドチャネルなどの表記もある)が可能となり、最大伝送速度の理論値は従来の144Mbps144 Mbpsから300Mbps300 Mbpsに増えた。ただし、2.4GHz4 GHz帯でチャネルボンディングを利用すると、近隣の無線LAN機器の干渉を受けずに利用出来るチャンネルが2つだけになってしまい<ref>[http://ascii.jp/elem/000/000/489/489564/index-3.html 今が買い時! IEEE802.11n対応無線LAN機器 ― 第1回 IEEE802.11nはどうして一気に300Mbpsの速度になったの?] - [[ASCII.jp]](2010年1月14日) 2013年11月15日閲覧。</ref>、他者の設置した無線LANや、自らの設置する別の無線LANと電波が干渉しやすくなって却ってスループットが低下することがあるので注意を要する。
 
[[2012年]](平成24年)現在、発売済の製品でチャネルボンディングのみを使用する製品は理論値150Mbps150 Mbps (MCS index 7)、チャネルボンディングとMIMOの双方を使用する製品は理論値450Mbps450 Mbps (MCS index 23) である<ref>http://www.pro.logitec.co.jp/pro/g/gLAN-WH450NGR/</ref><ref>[http://internet.watch.impress.co.jp/docs/special/20100301_350593.html IEEE 802.11nでPCも家電もゲームもおまかせ!高速&お手軽な最新無線LANルーターに買い換えよう] INTERNET Watch 2010年3月1日</ref><ref>[[:en:IEEE 802.11n-2009|IEEE 802.11n-2009]](英語版)を参照</ref><ref>[[2011年]](平成23年)現在、最大伝送速度が300Mbps300 Mbpsの無線LANルーターは「11n準拠」、150Mbps150 Mbpsの無線LANルーターは「n (11n) テクノロジー対応」としてそれぞれ販売されている。</ref>。
 
IEEE 802.11nは、正式規格策定完了前に市場投入された802.11nドラフト版2.0準拠製品と同じ周波数帯で基本機能の変更なく相互接続性を確保する。ドラフト認定された機器は最終的な認定プログラムの中核となる要件を満たすため、再テストを受けることなく「802.11n認定機器」として扱える<ref>http://www.wi-fi.org/pressroom_overview.php?newsid=835</ref>。
 
2012年頃から無線LAN機器の激増により、2.4GHz4 GHz帯で電波の干渉による速度低下が特に都市部で多く発生するようになった<ref>{{cite news|url=http://pc.nikkeibp.co.jp/article/trend/20120329/1044715/|title=これでいいのか“汚れた”無線LAN|publisher=[[日経BP]] PC Online|author=金子寛人|date=2012-05-02|accessdate=2012-12-18}}</ref>。まだ普及が少ない5GHz5 GHz帯では比較的安定した通信が可能である。大手通信キャリアなどによる公衆無線LANの5GHz5 GHz対応が進んでいる。
 
なお、市販の無線LAN機器が5GHz5 GHzに対応しているかどうか不明な場合、11'''a'''/b/g/n対応機器と記されていれば5GHz5 GHz対応、11b/g/nならば2.4GHz4 GHzのみ対応というように見分けることが出来る。
 
== IEEE 802.11i ==
583 ⟶ 582行目:
 
== 802.11vht ==
通称 802.11vht (802.11 very high throughput)、ギガビットWi-Fiとも呼ばれる第5世代の無線LAN規格も研究・開発が行われている。マルチリンク技術を実装し、デュアルリンク接続で1Gbps1 Gbps以上を実現、シングルリンク接続でも実効速度500Mbps500 Mbps以上の達成を目標にしている<ref>[http://www.atmarkit.co.jp/ait/articles/1303/06/news008.html 解剖! ギガビット無線LAN(1):11nの10倍以上! 次世代無線LANの802.11acとは?] - [[@IT]](2013年03月11日) 2013年11月15日閲覧。</ref>。世界各国で研究が本格化しており、日本の[[情報通信研究機構|NICT]](情報通信研究機構)では、2008年には60GHz60 GHz帯を使って3Gbps3 Gbpsもの高速な無線LANシステムの開発に成功している<ref>[http://internet.watch.impress.co.jp/cda/news/2008/11/04/21409.html 60GHz帯を使って最大3Gbps、NICTらが超高速無線LANシステム] - [[INTERNET Watch]](2008年11月4日) 2013年11月15日閲覧。</ref>。
 
既に標準規格として制定されたものではIEEE 802.11acとIEEE 802.11adがある。
 
=== IEEE 802.11ac (Wi-Fi5Fi 5) ===
IEEE 802.11acはギガビットスループットをIEEE 802.11aやIEEE 802.11nと同じ5GHz5 GHz帯で提供することが規定されている。2.4GHz4 GHzは利用しない。
 
80MHz80 MHzチャネルボンディング(必須)<ref>40MHz40 MHzチャンネルボンディング時の802.11nに比べ、データ信号用サブキャリアが108→234本に増えるため、最大伝送速度は234/108 = 13/6倍になる。</ref>、160MHz160 MHzチャネルボンディング、80MHz80 MHz +80MHz 80 MHzチャネルボンディング、256QAM<ref>64QAMに比べ、1シンボル当たりのビット数が6bit→8bitに増えるため、最大伝送速度は8/6 = 4/3倍になる。</ref>, MU-MIMO(MIMO(以上オプション)を採用することで伝送速度をさらに高速化させている。
 
周波数に5GHz5 GHz帯を使うため、11a同様、電子レンジの影響を受けにくい利点があるが、信号強度の空間伝搬損失は通信に使用する周波数の2乗に比例するため、2.4GHz4 GHz帯の信号ほど遠くまで伝搬しない。
 
また、IEEE 802.11nに比べ仕様が簡素化された。全てのフレームはA-MPDU形式となった。MCS setはストリーム数の情報を分離することで0-76から0-9に削減された。ビームフォーミング方式も簡素化された。Greenfield形式フレームは廃止された。
 
最大伝送速度は、Wave1(第1世代)で1.3Gbps3 Gbps、Wave2(第2世代)で6.9Gbps(160MHz9 Gbps(160 MHzチャネルボンディング、8ストリーム時)となる。これまでのIEEE 802.11a/nと同じ周波数帯を使用し、[[後方互換性]]があるため既存の無線LANからも移行(アップグレード)しやすい。またMIMOを発展させた[[MIMO#マルチユーザーMIMO|MU-MIMO]]の技術を用いて、複数のクライアントが存在する{{仮リンク|サービスセット|en|Service set (802.11 network)}}においても、各クライアントのスループットが低下しにくくなった。ただし、端末側にも2本以上のアンテナを搭載する必要があり端末数スペースが必要となるため、市場に占める対応機器は2015年現在、一部の高機能機種に限られている。
 
2012年にIEEE 802.11acドラフト規格対応の無線ブロードバンドルーターが製品化された。11ac規格自体は5GHz5 GHz帯域のみを使用する規格であり、2.4GHz4 GHzを使用する11b/g/n規格との互換性はないが、市販製品では11acに加えて11nの通信機能を持たせることで、過去の11a/b/g/n機器からのスムーズな移行を可能にしている。
 
{| class="wikitable"
|+ IEEE 802.11ac の最大通信速度(理論値)<ref name="legalprohibition" />
! 帯域幅 !! MIMO不使用 !! 2x2 MIMO使用
(オプション)
!3x3 MIMO使用
(オプション)
!4x4 MIMO使用
(オプション)
!8x8 MIMO使用<br />(MU-MIMO<ref>1ユーザーに対しては最大4ストリームのため、1つの端末に対する最大速度は4x4 MIMOと同等。下記数値は親機側の通信速度合計の理論値。</ref>)
(オプション)
|-
! 80MHz80 MHz
(必須)
| 433.3 (292.5) Mbps || 866.7 (585.0) Mbps || 1300 (877.5) Mbps || <span style="color:#00F">1733 (1170) Mbps</span> || <span style="color:#00F">3467 (2340) Mbps</span>
|-
! 160MHz160 MHz
(オプション)
| <span style="color:#00F">866.7 (585.0) Mbps</span> || <span style="color:#00F">1733 (1170) Mbps</span> || <span style="color:#00F">2600 (1755) Mbps</span> || <span style="color:#00F">3467 (2340) Mbps</span> || <span style="color:#00F">6933 (4680) Mbps</span>
|}
([[変調方式]] [[直角位相振幅変調|256QAM]], 符号化率 5/6, [[ガードインターバル|GI]] 400 (800) nsの時)<br />
※<span style="color:#00F">青字</span>はWave2規格で追加されたもの。
 
2015年現在市販されている最大1733Mbps1733 Mbps対応の製品は、帯域幅では80MHz80 MHz幅を使用しながら、第二世代規格であるWave2で規定された4x4 MIMOを使用している。
 
=== IEEE 802.11ad ===
{{See also|WiGig}}
2012年12月にIEEE802IEEE 802.11ad-2012として仕様が確定された。また2013年に、WiGig規格に準拠した相互認証プログラムをWi-Fi Alliance が実施することが発表され、2016年提供開始された。
 
60GHz60 GHzという高い周波数帯を使うため、壁や障害物のない、10m程度の近距離でのギガビット通信を想定している<ref>[http://pc.nikkeibp.co.jp/article/basic/20120517/1049766/ <<図解で分かる無線通信>>【IEEE 802.11ad/WiGig】60GHz帯を使い近距離の機器間で高速通信] - PC Online(2012年8月6日) 2013年11月15日閲覧。</ref>。
 
また、60GHz60 GHz帯は空気中の酸素と共振するため、伝搬減衰が大きい。
 
PHY層はシングルキャリアは必須(4620Mbps (4620 Mbps)、OFDMはオプション (6.756.75Mbps75 Mbps) である。最大伝送速度は6.8Gbps8 Gbps
 
チャネル幅は2.16GHz16 GHz幅。57GHz57 GHz -66GHz 66 GHzを利用。利用可能チャネルと中心周波数は以下の通り。
* CH1: 58.32GHz32 GHz
* CH2: 60.48GHz48 GHz
* CH3: 62.64GHz64 GHz
* CH4: 64.8GHz8 GHz
{| class="wikitable"
!MCS
644 ⟶ 643行目:
!変調
!符号化率
!伝送レート (Mbps)
|-
|1
714 ⟶ 713行目:
Display PortとHDMIへの変換はAV-PAL、PCIe、USB3.0、SDIOへのプロトコル変換はI/O PALが定義されている。
 
FastSessionTransferと呼ばれる仮想MACの技術を用いることで、60GHz60 GHzと、2.4GHz4 GHz5GHz5 GHzのPHYの間のセッションを高速に切り替える。
 
日本国内においては、2015年11月、総務省令第九十九号により、電波法施行規則の一部を改正する省令が公布され、以下の2種類に分類されることとなった。空中線電力が10mW10 mW超のものはキャリアセンス機能を具備することが義務づけられる。
* 証明規則 第2条第1項第19号の4の2 60GHz帯省電力データ通信システムの無線局(空中線電力10mW超)
* 証明規則 第2条第1項第19号の4の3 60GHz帯省電力データ通信システムの無線局(空中線電力10mW以下)
727 ⟶ 726行目:
このような空きチャンネルを無線ネットワークで有効利用しようと言う試みである。規格仕様では、あるWLANアクセスポイントはGPSにより自己の位置を把握し、ネットワークを通してジオロケーションデータベースにアクセスし、その場所で使用できる空きチャンネル(ホワイトスペース)の情報(利用可能時間を含む)を得る方式を取る。
 
PHYはIEEE 802.11acと同様にOFDMを使用。VHF/UHF帯では建物の壁面等による伝搬損失が、Wi-Fiに使われる2.4GHz4 GHz/5GHz5 GHz帯よりも小さいため、電波の有効到達範囲は拡がる事になる。
 
802.11af の規格仕様は:<ref>http://iwparchives.jp/files/pdf/iwp2014/iwp2014-ch04-03-p201.pdf</ref>
* OFDM チャネル帯域幅6/7/8MHz8 MHz
* 伝送速度 約20 - 30Mbps30 Mbps
* 伝送距離 約100 - 500m500 m
日本では、VHFについてはアナログテレビの停波のあとテレビ局と国との旧アナログテレビ用帯域返還の交渉が決裂してその多くが再利用の目処が立たないままとなっているため、テレビのほぼ1チャンネル分やそれ以上の帯域が全国的に無線LAN専用に割り当てられる可能性も一応ありうる一方、UHFについては、各物理チャンネルの境界付近にある約1セグメント(つまりテレビ1チャンネルの14分の一)相当の帯域のガードバンドの全部もしくは一部が利用可能になる可能性は期待できるものの、それ以外の周波数については、米国など大陸国と比較して、山地の入り組んだ狭い地域にテレビ放送塔や中継局が密集しているため、特に都市部でTVホワイトスペースの空きチャンネルは少なく<ref>なお「[[スピルオーバー]]潰し」として知られる電波割り当ての非明示的な方針が何らかの理由により変更されたり、4Kや8K画質の地上波放送が全国レベルで実施されると、地方部でも同様に空きチャネルが極めて少なくなる可能性もある</ref>、より困難な条件になることが想定されている。
 
== IEEE 802.11ax (Wi-Fi6Fi 6) ==
{{See also|en:IEEE 802.11ax}}
IEEE802IEEE 802.11ax <ref>[https://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6 Wi-Fi Alliance® introduces Wi-Fi 6]</ref> <ref>[https://www.cnet.com/news/wi-fi-alliance-simplifying-802-11-wireless-network-tech-names/ Here come Wi-Fi 4, 5 and 6 in plan to simplify 802.11 networking names]</ref>とは高効率ワイヤレスを目指した、Wi-Fi仕様標準の1つであり <ref>{{Cite web|url=https://www.zdnet.com/article/next-generation-802-11ax-wi-fi-dense-fast-delayed/|title=Next-generation 802.11ax wi-fi: Dense, fast, delayed|author=Goodwins|first=Rupert|website=ZDNet|language=en|accessdate=2019-02-20}}</ref> <ref>{{Cite news|url=https://www.networkworld.com/article/3048196/mobile-wireless/faq-802-11ax-wi-fi.html|title=FAQ: What you need to know about 802.11ax, the next big Wi-Fi standard|last=Gold|first=Jon|newspaper=Network World|accessdate=2017-08-22|language=en}}</ref>、[[Wi-Fi Alliance]]により'''Wi-Fi 6'''として認定されている。
 
[[コンシューマー・エレクトロニクス・ショー|CES]] 2018で[[コンシューマー・エレクトロニクス・ショー|発表]]されたIEEE802IEEE 802.11ax対応デバイスは、合計11 Gbit / sの理論データレートをサポートしている<ref name="Dignan 2018">{{Cite news|last=Dignan|first=Larry|title=D-Link, Asus tout 802.11ax Wi-Fi routers, but you'll have to wait until later in 2018|url=https://www.zdnet.com/article/d-link-asus-tout-802-11ax-wi-fi-routers-but-youll-have-to-wait-until-later-in-2018/|accessdate=14 April 2018|publisher=zdnet|date=January 8, 2018 <!---- 14:49 GMT-->}}</ref> 高密度利用環境下の場合、平均スループットは[[ IEEE 802.11ac|IEEE 802.11acの]] 4倍、遅延も75%低下することが報告されている<ref name="Goodwins">{{Cite web|url=https://www.zdnet.com/article/next-generation-802-11ax-wi-fi-dense-fast-delayed/|title=Next-generation 802.11ax wi-fi: Dense, fast, delayed|author=Goodwins|first=Rupert|website=ZDNet|language=en|accessdate=2019-02-20}}</ref>
 
周波数のより効率的な利用のため、IEEE802IEEE 802.11axでは、 [[直交周波数分割多元接続|直交周波数分割多重アクセス]] (OFDMA)(OFDMA)、[[直角位相振幅変調|1024-QAM]]変調 、干渉を回避するため電力制御方式が導入された。また、[[MIMO]]および[[ MU-MIMO|MU-MIMO]]により、スループットが従来規格のIEEE802IEEE 802.11acよりも向上し、 [[ IEEE 802.11ah|Target Wake Time]]の導入による消費電力性能の向上や、[[Wi-Fi Protected Access|WPA3]]の採用によるセキュリティの向上が図られている<ref name="Goodwins2">{{Cite web|url=https://www.zdnet.com/article/next-generation-802-11ax-wi-fi-dense-fast-delayed/|title=Next-generation 802.11ax wi-fi: Dense, fast, delayed|author=Goodwins|first=Rupert|website=ZDNet|language=en|accessdate=2019-02-20}}</ref>。
 
{| class="wikitable"
913 ⟶ 912行目:
 
* サブキャリア間隔は11acの4分の1
* [[直交周波数分割多重方式|OFDM]]シンボル長が4倍(1024QAMサポート)
 
{| class="wikitable"
!特徴
![[ 802.11ac|802.11ac]]
!802.11ax
|-
|[[直交周波数分割多元接続|OFDMA]]
|非サポート
|サポート
|-
|[[マルチユーザーMIMO|マルチユーザーMIMO(MUMIMO (MU-MIMO)MIMO)]]
|[[通信リンク|ダウンリンク]]方向で利用可能 。最大4台。
|ダウンリンクおよび[[通信リンク|アップリンク]]方向で利用可能 。最大8台。
|-
|トリガーベースのランダムアクセス
|非サポート
|RUが直接割り当てられていないステーションによるUL OFDMA送信が可能。
|-
|空間周波数の再利用
|非サポート
|端末自身のネットワークでの送信と近隣ネットワークでの送信を区別可能。
Adaptive Power and Sensitivity Thresholdsを使用し、送信電力と信号検出しきい値を動的に調整して、空間の再利用を増やすことが可能。
|-
|[[ネットワーク割り当てベクトル|NAV]]
|1
|2
|-
|[[ IEEE 802.11ah|ターゲットウェイクタイム(TWT) (TWT)]]
|非サポート
|サポート。消費電力とメディアアクセスの競合を削減する。
|-
|フラグメンテーション
|静的フラグメンテーション
|動的フラグメンテーション
|-
|[[ガードインターバル]]
|0.4 &nbsp; µsまたは0.8 &nbsp; μs
|0.8 &nbsp; µs、1.6 &nbsp;µsまたは3.2 &nbsp;μs
|-
|シンボル持続時間
|3.2 &nbsp; μs
|12.8 &nbsp; μs<br />
|}
 
 
== IEEE 802.11ah ==
サブギガヘルツWiFi。対応製品の呼称は'''Wi-Fi HaLow'''(ヘイロー)。
 
920MHz920 MHz帯を利用。帯域幅は1MHz1 MHz幅と2MHz2 MHz幅が必須。
 
占有帯幅1MHzMCS10で、データレート150Kbps150 Kbps。想定伝送距離1kmまで。
 
{| class="wikitable"
981 ⟶ 979行目:
|
|
| colspan="3" |916.5 - 927.5 MHz
|-
|米国
987 ⟶ 985行目:
|
|
| colspan="4" |902 - 928 MHz
|-
|韓国
994 ⟶ 992行目:
|
|
| colspan="2" |917 - 923.5 MHz
|
|-
|欧州
| colspan="2" |868 - 868.6 MHz
|
|
1,007 ⟶ 1,005行目:
 
== IEEE 802.11p ==
2012年に車両間通信のために策定された<ref>{{citation|title=IEEE 802.11p |url=http://www.de-pro.co.jp/2016/11/22/8959/ |format=}}</ref>。IEEE 802.11pは、IEEE 802.11aを基に、[[高度道路交通システム]] (ITS: Intelligent Transport System) の路車間 (V2I:VehicleV2I: Vehicle-to-Infrastructure)、車車間 (V2V: Vehicle-to-Vehicle) 通信に対応するように機能を強化したもので、米国のITS計画を起源としており、米国では、[[物理層]]と[[MAC層]]のIEEE 802.11pと上位層のIEEE1609IEEE 1609を合わせて、WAVE(WirelessWAVE (Wireless Access in Vehicular Environments)Environments) と称されており、欧州でも、WAVEと同様の路車間、車車間通信を目的とした5.9GHz9 GHz帯の仕様の開発が進行中で、日本では、5.8GHz8 GHz帯のARIB STD-T75という規格を推進している<ref>{{citation|title=ITSの標準化 2015 |url=http://www.jsae.or.jp/01info/its/2015_bro_j.pdf |format=PDF}}</ref><ref>{{citation|title=WIRELESS JAPAN 2006 – 携帯、無線LAN関係規格の開発・標準化動向 2 802.11aベースで車同士の通信を行うIEEE802.11p |url=http://news.mynavi.jp/articles/2006/07/20/wj1/001.html |format=}}</ref>。
 
== 脚注 ==