「一般相対性原理」の版間の差分

削除された内容 追加された内容
無条件にこうはならない
タグ: モバイル編集 モバイルウェブ編集 改良版モバイル編集
5行目:
== 方程式の一般共変性 ==
具体的に考えるため、仮に座標系 <math>x^0,x^1,x^2,x^3</math> における法則
:<math>X(x^0,x^1,x^2,x^3) + \alpha Y(x^0,x^1,x^2,x^3) = A(x^0,x^1,x^2,x^3)</math>
について考える。この法則が一般相対性原理(一般共変性原理)を満たすとは次のことを意味する。まず、式変形して右辺がゼロの式に直す。
:<math>X(x^0,x^1,x^2,x^3) + \alpha Y(x^0,x^1,x^2,x^3) - A(x^0,x^1,x^2,x^3) = \bold{0}</math>
について考える。この法則が一般相対性原理(一般共変性原理)を満たすとは次のことを意味する。この法則の座標系 <math>x'^0,x'^1,x'^2,x'^3</math> における式は、座標系 <math>x^0,x^1,x^2,x^3</math> における式を座標変換することで得られる。ゼロに等しい上記法則は座標変換しても全体としてはゼロであることは変わらない。座標変換の結果は一般には
:<math>\frac{\partial x'^a}{\partial x^j}\cdots\frac{\partial x'^c}{\partial x^l}X(x'^0,x'^1,x'^2,x'^3) + \alpha \frac{\partial x'^d}{\partial x^m}\cdots\frac{\partial x'^f}{\partial x^o} Y(x'^0,x'^1,x'^2,x'^3) - \frac{\partial x'^g}{\partial x^p}\cdots\frac{\partial x'^i}{\partial x^r}A(x'^0,x'^1,x'^2,x'^3)=\bold{0}</math>
となり{{How|date=2022年2月}}各項は式の形状が変わり得る。ここで、各項 <math>X,Y,A</math> が座標変換について共変的(covariant)であれば(数学的には[[テンソル]]と呼ばれるものはそのような性質を持つ)、左辺の各項の変換係数が一致するため、上記の式は以下のように変形できる。