コンテンツにスキップ

「屈折」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
m r2.6.4) (ロボットによる 追加: ms:Pembiasan
編集の要約なし
 
(34人の利用者による、間の43版が非表示)
1行目: 1行目:
{{Otheruses|波が異なる媒質の間で進行方向を変えること|語が文法機能によって形を変えること|語形変化}}
{{Otheruses|波に関する屈折|言語学上の屈折|形態論}}
[[ファイル:Pen in water.jpg|サムネイル|光の屈折により、水面を境にしてペンが折れ曲がっているように見える。]]
[[ファイル:Refraction photo.png|サムネイル|プラスチックのブロックを通過する光束]]
'''屈折'''(くっせつ、{{Lang-en-short|refraction}}<ref>{{Cite book|1 =和書|author =[[文部省]]|coauthors =[[日本分光学会]]|title =[[学術用語集]] 分光学編|edition =増訂版|url =http://sciterm.nii.ac.jp/うcgi-bin/reference.cgi|date =1999年|publisher =[[培風館]]|isbn =4-563-04567-5|page =}}{{リンク切れ|date=2017年10月 |bot=InternetArchiveBot }}</ref>)とは、[[界面]]において、波([[波動]])が進行方向を変えることである。異なる[[媒質]]を通るときに、波の[[周波数]]が変わらずに進む[[速度]]が変わるため進行方向が変わる{{疑問点範囲|([[エネルギー保存の法則]]や[[運動量保存の法則]]による)|date=2023-2-14}}。


光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしては[[ホイヘンス=フレネルの原理|ホイヘンスの原理]]を使った[[スネルの法則]]が成り立つ<ref name=":0">{{Cite book|author=斉藤晴男 兵藤申一|title=高等学校 物理IB|date=1993年|publisher=啓林館}}</ref>。部分的に反射する振る舞いは[[フレネルの式]]で表される。なぜ光が屈折するかについては、[[量子力学]]的に[[経路積分|ファインマンの経路積分]]によって説明される<ref>R. P. Feynman "Space-Time Approach to Non-Relativistic Quantum Mechanics" Rev. Mod. Phys. '''20''' (1948) 367.</ref><ref>R. P. Feynman "Space-Time Approach to Quantum Electrodynamics" Phys. Rev. 76, (1949) pp.769-89 </ref>。

[[ファイル:Pencil in a bowl of water.png|right|150px|thumb|水中に差し込んだ棒が上方に曲がって見える理由を説明する図 棒上のxに由来する光は水面で屈折を起こす。このため、Xの見かけ上の位置はYになる。]]
[[ファイル:Prisma.png|right|100px|thumb|プリズム]]
[[ファイル:Lens rays 1.png|right|200px|thumb|レンズ]]
'''屈折'''(くっせつ、Refraction)とは、[[光]]や[[音波]]などの波が異なる媒質の境界で進行方向を変えることである。


== 概要 ==
== 概要 ==
[[ファイル:Pencil in a bowl of water.png|thumb|水中の棒が上に曲がって見える図|左]]
波の進む速度が[[媒質]]によって異なるためと説明される。
例えば、光線がガラスを通ると、屈折して曲がっているように見えるが、これはガラスが空気と異なる[[屈折率]]を持っているためである。ガラスの表面に対して垂直に光が入射した場合、光の進行方向は変わらず、速度だけが変化するが、厳密にはこの場合も屈折という。


左の図のように、水中に差し込んだ棒が上方に曲がって見える現象は光の屈折で説明できる。空気の屈折率は約1.0003、水の屈折率は約1.3330と異なるため、水から反射した光は屈折して目に届く。つまり図の棒上のxに由来する光が水面で屈折を起こすため、Xの見かけ上の位置はYになる。これが水中の棒が実際より上方にあるように見せる。
媒質Aと媒質Bがあり、互いにA、Bは異なった媒質とする。また、媒質A、媒質Bはある平坦な境界面で接しているとする。この時、波([[波動]])が、A →Bへと境界面を通過する場合、その境界面で波の進行方向が変わる。


屈折率が大きい媒質から小さい媒質に[[光]]が入るときに、入射光が境界面を屈折せず、すべて反射することを[[全反射]]という。この原理は[[光ファイバー]]等に使われる<ref name=":0" />。[[等方的]]な媒質から[[異方的]]な媒質へ波が進む場合は、[[複屈折]]を起こす<ref>{{Cite web|和書|url=http://uniopt.co.jp/explanation/birefringence/|title=複屈折とは|accessdate=2017年1月2日|publisher=ユニオプト株式会社}}</ref>。
等方的な媒質から[[異方的]]な媒質へ波が進む場合は、[[複屈折]]を起こす。


[[入射角]]と[[屈折角]]の間には[[スネルの法則]]が成り立つ。
=== スネルの法則 ===
[[ファイル:SnailLaw ja.svg|左|サムネイル|198x198px|スネルの法則の例]]
{{Main|スネルの法則}}
スネルの法則は二つの媒質中を進行する波の伝播速度と、入射角・屈折角の関係を表した[[法則]]。媒質Aにおける波の速度を<math>v_{\mathrm{A}}</math>、媒質Bにおける波の速度を<math>v_{\mathrm{B}}</math>、媒質Aから媒質Bへの[[入射角]](またはBからAへの[[屈折角]])を<math>\theta_{\mathrm{A}}</math>、媒質Bから媒質Aへの入射角(またはAからBへの屈折角)を<math>\theta_{\mathrm{B}}</math>とすると、以下の関係が成立する。


:<math> { \sin \theta_{\mathrm{A}} \over {\sin \theta_{\mathrm{B}}} } = {v_{\mathrm{A}} \over {v_{\mathrm{B}}} }.</math>
== 屈折に関連した自然現象 ==
光の屈折による自然現象には、[[虹]]、[[蜃気楼]]、[[幻日]]、[[逃げ水]]のほか、日没や日の出の時刻が天文学上の計算からずれるという形で現れる。


ここで、<math> {v_{\mathrm{A}} \over {v_{\mathrm{B}}} }</math>の値を媒質Aに対する媒質Bの'''[[屈折率|相対屈折率]]'''と定義し、これを<math>n_{\mathrm{AB}}</math>(または<math>n_{\mathrm{A\rightarrow B}}</math>)で表す。以上のことをまとめると
音波の屈折による自然現象には、特定の天候に限って遠方の鉄道などの音がはっきり聞こえるというものがある。これは上空に[[逆転層]]が生じ、低温の空気では[[音速]]が下がるため、いったん上空に向かって進んだ音波が屈折し、再び地上に戻ってくることで説明できる。
:<math>{ \sin \theta_{\mathrm{A}} \over {\sin \theta_{\mathrm{B}}} } = {v_{\mathrm{A}} \over {v_{\mathrm{B}}} } = n_{{\mathrm{AB}}}.</math>
となる(図を参照)。


=== フレネルの式 ===
== 屈折を応用した機器 ==
{{Main|フレネルの式}}フレネルの式は、[[界面]]における光のふるまい([[反射 (物理学)|反射]]・'''屈折''')を記述する式である。屈折率が<math>n</math>の媒質から<math>n'</math>の媒質へ[[界面]]に垂直に光線が入射すると、入射光の強度を<math>I_0</math>とした場合の反射光の強度<math>I</math>は以下のように表される。<ref>{{Cite web|和書|url=https://kotobank.jp/word/%E3%83%95%E3%83%AC%E3%83%8D%E3%83%AB%E3%81%AE%E5%8F%8D%E5%B0%84%E5%85%AC%E5%BC%8F-790754|title=フレネルの反射公式|accessdate=2017年1月1日|publisher=コトバンク}}</ref>
光の屈折を応用した光学機器には、[[レンズ]]([[顕微鏡]]、[[望遠鏡]]、[[眼鏡]]など)、[[プリズム]]、[[ショ糖濃度|屈折糖度計]]などがある。
 


<math>I = I_0\left ( \frac{n-n'}{n+n'} \right )^2.</math>
==関連項目==

入射面の内側に偏光している光が、透明な媒質の表面で反射された場合の入射角を<math>i</math>、屈折角を<math>r</math>とすると、反射光の強度は以下のように表される。

<math>I = \left ( \frac{I_0\sin^2(i-r)}{I_0\sin^2(i+r)} \right ).</math>

入射面に垂直な方向に偏光している光の場合には以下のようになる。

<math>I = \left ( \frac{I_0\tan^2(i-r)}{I_0\tan^2(i+r)} \right ).</math>

== 自然現象 ==
[[画像:Calcite.jpg|thumb|複屈折を示す方解石]]
[[虹]]、[[蜃気楼]]、[[幻日]]、[[逃げ水]]のほか、[[日没]]や[[日の出]]の時刻が[[天文学]]上の[[計算]]からずれるという形で現れる。音波の例としては、特定の[[天候]]に限って遠方の[[鉄道]]などの音がはっきり聞こえるというものがある。これは上空に[[逆転層]]が生じ、低温の空気では[[音速]]が下がるため、いったん上空に向かって進んだ音波が屈折し、再び地上に戻ってくると説明される<ref name=":0" />。

== 応用機器 ==
[[ファイル:Lens rays 1.png|thumb|レンズ]]
[[ファイル:Prisma.png|thumb|プリズム]]
; [[レンズ]] : 凸レンズでは通した光を屈折させて一点に集中させ、凹レンズでは光を屈折させて並行に進ませることによって、観測している者に実像より拡大や縮小した像を見せる。レンズは[[カメラ]]、[[顕微鏡]]、[[望遠鏡]]、[[眼鏡]]などに使われる<ref name=":0" />。
; [[プリズム]] : 媒質は光の[[波長]]によって異なるため、プリズムを出る光は波長の違いにより色ごとに分散する。この光の分散が虹のような[[スペクトル]]を作り出す。
; [[糖度|糖度計]] : 試料液(測定対象となる液体)に、糖と水以外が入っていないことを前提に、水に含まれる糖の含有量によって光の屈折率が異なる性質を利用し、その試料の糖度を計る<ref>{{Cite web|和書|url=http://www.kyoto-kem.com/ja/learn/refract/|title=屈折計ってどんな装置?|accessdate=2017年1月2日|publisher=京都電子工業株式会社}}</ref>。

== 脚注 ==
{{脚注ヘルプ}}
<references />

== 関連項目 ==
* [[屈折率]]
* [[屈折率]]
* [[音速]]、[[光速度]] (媒質中の波の速度)
* [[音速]]、[[光速度]] (媒質中の波の速度)
* [[回折]]
* [[円偏光二色性]]
* [[メタマテリアル]] - 負の屈折率の概念から、[[自然]]界の物質には無い振る舞いをする人工物。
* [[高屈折率高分子]]
* [[偏光]]
* [[粒子と波動の二重性]]


== 外部リンク ==
{{Commonscat|Refraction}}
* [http://www.wakariyasui.sakura.ne.jp/p/wave/housoku/kussetu.html わかりやすい高校物理の部屋 - 波の屈折]
* [http://hooktail.sub.jp/wave/snell/ 物理のかぎしっぽ - 屈折の法則]
* [https://www.photonic-lattice.com/topics/2-d-birefringence-measurement-system-introduction/ 複屈折を測定できるPA/WPAシリーズの測定原理、装置構成、測定事例について](株)フォトニックラティス

{{Normdaten}}
{{デフォルトソート:くつせつ}}
{{デフォルトソート:くつせつ}}
[[Category:幾何光学]]
[[Category:幾何光学]]
{{sci-stub}}

[[af:Ligbreking]]
[[am:የብርሃን ስብረት]]
[[ar:انكسار (فيزياء)]]
[[az:İşığın sınması]]
[[be:Праламленне]]
[[bg:Пречупване]]
[[ca:Refracció]]
[[cs:Lom vlnění]]
[[cy:Plygiant]]
[[da:Refraktion]]
[[de:Brechung (Physik)]]
[[el:Διάθλαση]]
[[en:Refraction]]
[[eo:Refrakto]]
[[es:Refracción]]
[[et:Refraktsioon]]
[[eu:Errefrakzioa]]
[[fa:شکست نور]]
[[fi:Taittuminen]]
[[fr:Réfraction]]
[[gl:Refracción]]
[[he:שבירה]]
[[hr:Refrakcija]]
[[ht:Refraksyon]]
[[hu:Fénytörés]]
[[id:Refraksi]]
[[it:Rifrazione]]
[[kn:ವಕ್ರೀಭವನ]]
[[ko:굴절]]
[[lt:Bangos lūžis]]
[[lv:Gaismas laušana]]
[[ml:അപവര്‍ത്തനം]]
[[mr:अपवर्तन]]
[[ms:Pembiasan]]
[[nl:Lichtbreking]]
[[no:Lysbrytning]]
[[pl:Refrakcja]]
[[pms:Rifrassion]]
[[pt:Refração]]
[[ro:Refracție]]
[[ru:Преломление]]
[[scn:Rifrazzioni]]
[[sh:Refrakcija]]
[[simple:Refraction]]
[[sl:Lom svetlobe]]
[[sr:Prelamanje svetlosti]]
[[sv:Refraktion]]
[[ta:ஒளி முறிவு]]
[[tr:Kırılım]]
[[uk:Заломлення]]
[[ur:انعطاف]]
[[vi:Khúc xạ]]
[[yi:ברעכונג]]
[[zh:折射]]
[[zh-min-nan:Chiat-siā]]
[[zh-yue:折射]]

2023年11月26日 (日) 06:53時点における最新版

光の屈折により、水面を境にしてペンが折れ曲がっているように見える。
プラスチックのブロックを通過する光束

屈折(くっせつ、: refraction[1])とは、界面において、波(波動)が進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わるエネルギー保存の法則運動量保存の法則による)[疑問点]

光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ[2]。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される[3][4]

概要[ソースを編集]

水中の棒が上に曲がって見える図

例えば、光線がガラスを通ると、屈折して曲がっているように見えるが、これはガラスが空気と異なる屈折率を持っているためである。ガラスの表面に対して垂直に光が入射した場合、光の進行方向は変わらず、速度だけが変化するが、厳密にはこの場合も屈折という。

左の図のように、水中に差し込んだ棒が上方に曲がって見える現象は光の屈折で説明できる。空気の屈折率は約1.0003、水の屈折率は約1.3330と異なるため、水から反射した光は屈折して目に届く。つまり図の棒上のxに由来する光が水面で屈折を起こすため、Xの見かけ上の位置はYになる。これが水中の棒が実際より上方にあるように見せる。

屈折率が大きい媒質から小さい媒質にが入るときに、入射光が境界面を屈折せず、すべて反射することを全反射という。この原理は光ファイバー等に使われる[2]等方的な媒質から異方的な媒質へ波が進む場合は、複屈折を起こす[5]

スネルの法則[ソースを編集]

スネルの法則の例

スネルの法則は二つの媒質中を進行する波の伝播速度と、入射角・屈折角の関係を表した法則。媒質Aにおける波の速度を、媒質Bにおける波の速度を、媒質Aから媒質Bへの入射角(またはBからAへの屈折角)を、媒質Bから媒質Aへの入射角(またはAからBへの屈折角)をとすると、以下の関係が成立する。

ここで、の値を媒質Aに対する媒質Bの相対屈折率と定義し、これを(または)で表す。以上のことをまとめると

となる(図を参照)。

フレネルの式[ソースを編集]

フレネルの式は、界面における光のふるまい(反射屈折)を記述する式である。屈折率がの媒質からの媒質へ界面に垂直に光線が入射すると、入射光の強度をとした場合の反射光の強度は以下のように表される。[6]

入射面の内側に偏光している光が、透明な媒質の表面で反射された場合の入射角を、屈折角をとすると、反射光の強度は以下のように表される。

入射面に垂直な方向に偏光している光の場合には以下のようになる。

自然現象[ソースを編集]

複屈折を示す方解石

蜃気楼幻日逃げ水のほか、日没日の出の時刻が天文学上の計算からずれるという形で現れる。音波の例としては、特定の天候に限って遠方の鉄道などの音がはっきり聞こえるというものがある。これは上空に逆転層が生じ、低温の空気では音速が下がるため、いったん上空に向かって進んだ音波が屈折し、再び地上に戻ってくると説明される[2]

応用機器[ソースを編集]

レンズ
プリズム
レンズ
凸レンズでは通した光を屈折させて一点に集中させ、凹レンズでは光を屈折させて並行に進ませることによって、観測している者に実像より拡大や縮小した像を見せる。レンズはカメラ顕微鏡望遠鏡眼鏡などに使われる[2]
プリズム
媒質は光の波長によって異なるため、プリズムを出る光は波長の違いにより色ごとに分散する。この光の分散が虹のようなスペクトルを作り出す。
糖度計
試料液(測定対象となる液体)に、糖と水以外が入っていないことを前提に、水に含まれる糖の含有量によって光の屈折率が異なる性質を利用し、その試料の糖度を計る[7]

脚注[ソースを編集]

  1. ^ 文部省日本分光学会学術用語集 分光学編』(増訂版)培風館、1999年。ISBN 4-563-04567-5http://sciterm.nii.ac.jp/うcgi-bin/reference.cgi [リンク切れ]
  2. ^ a b c d 斉藤晴男 兵藤申一 (1993年). 高等学校 物理IB. 啓林館 
  3. ^ R. P. Feynman "Space-Time Approach to Non-Relativistic Quantum Mechanics" Rev. Mod. Phys. 20 (1948) 367.
  4. ^ R. P. Feynman "Space-Time Approach to Quantum Electrodynamics" Phys. Rev. 76, (1949) pp.769-89
  5. ^ 複屈折とは”. ユニオプト株式会社. 2017年1月2日閲覧。
  6. ^ フレネルの反射公式”. コトバンク. 2017年1月1日閲覧。
  7. ^ 屈折計ってどんな装置?”. 京都電子工業株式会社. 2017年1月2日閲覧。

関連項目[ソースを編集]

外部リンク[ソースを編集]