コンテンツにスキップ

根圏

出典: フリー百科事典『ウィキペディア(Wikipedia)』

これはこのページの過去の版です。Emply shell China dry (会話 | 投稿記録) による 2016年11月30日 (水) 14:20個人設定で未設定ならUTC)時点の版であり、現在の版とは大きく異なる場合があります。

根圏[1] A=細菌を捕食するアメーバ;BL=根からの炭素源を受け取らない細菌。エネルギーが制限されている;根から炭素源を受け取る細菌。エネルギーの制限を受けない;RC=根から供給される炭素源;SR=脱落した根毛細胞;F=真菌の菌糸;N=線形動物

根圏(こんけん、rhizosphere)とは、植物の根の分泌物と土壌微生物とによって影響されている土壌空間である[2]

根圏の範囲

根圏は1904年にLorenz Hiltnerによって「植物の根から影響を受ける土壌領域」と定義された[3][4]

根圏は元来、根から数mmの範囲を指す。近年、意味が拡張されて根の内部を根圏に含める場合もある。この広い意味での根圏は3つの空間に分けることができる[5]

内根圏 (endorhizosphere)
根の表皮皮層の細胞間隙など根の内部環境。
根面 (rhizoplane)
根の表面。
外根圏 (exorhizosphere)
根の周囲の土壌領域。

根圏に含まれない土壌空間をbulk soil(bulkは大部分の意)と呼ぶ。

根圏に供給される物質

根圏は、bulk soilよりもはるかに多くの天然の有機物を含有する[6]。なぜなら、根から様々な化合物が周囲の土壌環境へと放出されるためである。この放出された有機物をrhizodeposition(depositionは堆積物の意)、あるいは根分泌物(Rootexudate)と呼ぶ。多くの細菌はこれらの有機物を摂取し、生息している。それら細菌を捕食する原生動物線形動物の数も、bulk soilより多い。このため、植物が必要とする栄養循環や病害抑制の多くは根のすぐ隣で発生する[7]

気体

根細胞が呼吸をすることにより、二酸化炭素が根圏に排出される[5]酸素は植物の地上部から通気組織を通じて根圏に供給される。根圏微生物はこの酸素を利用することができる[5]

脱落細胞

根端分裂組織が活発に分裂して根が伸長すると、分裂組織を覆っている根冠は剥がれ落ちる。そして、新しい根冠が生える。根冠が新生されてから剥がれ落ちるまで数日程度である[5]根毛は根の伸長領域で形成されており、普通、根の伸長に伴って古いものから枯死・脱落していく。根毛の脱落は普通、新生されてから数日から数週間である。さらに、伸長領域の表皮や根の部分も伸長に伴って脱落する[5]

不溶性の鉄結合型のリン酸落花生の根の細胞を加えると、リン酸は鉄から遊離して溶出する。これは、細胞壁中のフェノール化合物が、リン酸と結合している鉄を吸着するためと考えられている。鉄結合型はそのままでは微生物にとって利用不可能であるため、この現象により微生物はリン酸を利用可能となる[5]

高分子有機物

根冠や根端近くの表皮細胞は、デンプンから生成された粘液質(ムシラーゲ、mucilage)をゴルジ体経由で多量に分泌している[5]。粘液質はガラクツロン酸重合体を主成分とする。そのほか、ラムノ-スフコースなどの酸性多糖を含む。粘液質は、土壌の保水力を高める働きを持つ[8]。また、アルミニウムなどの陽イオンを吸着する[9][10]。アルミニウムは植物にとっても微生物にとっても有害であり、粘液質は生物から隔離する作用があると考えられる。以上の作用により、根圏は植物や根圏微生物にとって適切な環境となる。

多種多様なタンパク質は植物から根圏に供給されている。根圏はbulk soilと比べて脱リン酸化酵素活性が高い。農耕地および野草地での16種の植物の根圏と非根圏における酸性脱リン酸化酵素活性の比較では、根圏における活性は非根圏のそれより1.1-26.8倍高かった[11]。脱リン酸化酵素は、土壌中の有機物にエステル結合しているリン酸を加水分解し、植物や根圏微生物に利用可能にする。

低分子有機物

植物の根から滲出される低分子有機物には、アミノ酸有機酸といった、微生物が栄養として直接、摂取することができる物質がある。これらとは別に、植物の二次代謝産物もある。二次代謝産物は根圏微生物に様々な影響を及ぼす。

特に、滲出物中のフラボノイドの割合は大きい。例えばシロイヌナズナでは根から滲出する二次代謝産物のうち37%が、ケルセチンを主とするフラボノイドである[12]。根圏中のフラボノイドは根圏細菌の生育を抑制したり促進したりする。ファイトアレキシンは抗菌活性を示す。マメ科植物は、根粒菌の生育を活性化するためのシグナル分子としてフラボノイドを分泌する[8]

植物の根からネギは揮発性硫黄化合物であるアルキルシステインスルフォキシドを根から分泌する。この揮発性化合物は、病原性菌類Sclerotium cepivorum菌核の発芽を誘導することが知られている[5]

他の生物への影響

微生物数

根圏には非根圏土壌(植物の根による影響が及ばない土壌領域)に比べて著しく微生物数が大きい。その比は40倍から200倍に及ぶといわれている[13]

相利共生

植物は根から多くの化合物を分泌する。これら分泌物は根圏中の他の生物との相利共生に役割を果たす。

  • 菌根菌ストリゴラクトンを分泌し、胞子の発芽を促進し、菌根への生長を開始させ、コロニー形成を可能にさせる。
  • 寄生植物ストライガ属はストリゴラクトンの存在を検出し、それらを検出したときに発芽する。その後、根へと移動し、栄養素源として利用する。
  • リゾビウム属といった共生的な窒素固定細菌は、マメ科植物の根が分泌するフラボノイド様の化合物を検出する。検出すると、根粒形成因子(ノッド因子)を産生し、植物へとシグナルを送り、根粒の形成を促す。これら根粒菌は植物からの栄養素によって生きながらえ、植物が利用できる形態へと窒素ガスを変換する。
  • 非共生的(または自由生活)な窒素固定細菌は、特定の植物(多くの草本を含む)の根圏の外で生育でき、根圏では共生的な窒素固定細菌と同様に窒素ガスを固定する。根圏微生物と植物との関連は緩いと考えられているにもかかわらず、根圏微生物は植物の状態に非常に強く応答する。例えば、イネの根圏における窒素固定細菌の日内周期は植物の挙動を模倣したものである。また、イネの成長段階では窒素固定細菌は窒素をより多く固定して供給する傾向にある。成長段階ではイネは窒素をより多く要求する[14]

排他主義

いくつかの植物は、同種または多種の生物の増殖や生育を阻害するアレロパシー物質を根から分泌する。

  • カンキツのアレロパシー物質は同種の果樹の生育を抑制する。
  • クルミリンゴのアレロパシー物質は同種や多種の生育を抑制する。
  • 北米の中湿性の温帯林のガーリックマスタードはアレロパシー物質を分泌する。この物質はガーリックマスタード自身と菌根菌との間で形成する相利共生は妨害されると考えられている[15]

関連項目

脚注

  1. ^ Giri, B.; Giang, P. H.; Kumari, R.; Prasad, R.; Varma, A. (2005). “Microbial Diversity in Soils”. Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology. 3. pp. 19–55. doi:10.1007/3-540-26609-7_2. ISBN 3-540-22220-0 
  2. ^ Microbial Health of the Rhizosphere”. 2007年3月12日時点のオリジナルよりアーカイブ。2006年5月5日閲覧。
  3. ^ L. Hiltner (1904). “Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache”. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98: 59-78. 
  4. ^ Anton Hartmann; Michael Rothballer; Michael Schmid (November 2008). “Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research”. Plant and Soil 312 (1): 7-14. doi:10.1007/s11104-007-9514-z. http://link.springer.com/article/10.1007%2Fs11104-007-9514-z. 
  5. ^ a b c d e f g h 筑波大学生物学類
  6. ^ Stotsky, G. (2000). Soil Biochemistry. CRC Press. p. 207. ISBN 0-8247-9441-9. Volume 9 
  7. ^ The Soil Food Web”. USDA-NRCS. 2006年7月3日閲覧。
  8. ^ a b 広岡 和丈 (2014). “植物の生育に深くかかわる根圏微生物のフラボノイド応答 植物の生育促進に働くメカニズム”. 化学と生物 52 (9): 559-562. doi:10.1271/kagakutoseibutsu.52.560. https://www.jstage.jst.go.jp/article/kagakutoseibutsu/52/9/52_560/_pdf. 
  9. ^ 黎 暁峰; 馬 建鋒; 松本 英明 (1998). “9-17 ムシラーゲのアルミニウム結合能力の解析 (9. 植物の無機栄養)”. 日本土壌肥料学会講演要旨集: 73. http://ci.nii.ac.jp/els/110001770866.pdf?id=ART0001903905&type=pdf&lang=en&host=cinii&order_no=&ppv_type=0&lang_sw=&no=1468753014&cp=. 
  10. ^ 黎 暁峰; 馬 建鋒; 松本 英明 (1998). “20 アルミニウム毒性と耐性におけるムシラーゲの役割 (関西支部講演会)”. 日本土壌肥料学会講演要旨集 44: 326. http://ci.nii.ac.jp/els/110001771335.pdf?id=ART0001904378&type=pdf&lang=en&host=cinii&order_no=&ppv_type=0&lang_sw=&no=1468753649&cp=. 
  11. ^ 但野 利秋 (1994). “植物根の酸性フォスファターゼ分秘能を利用した燐資源の効率的循環利用法の開発”. KAKEN研究課題. https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-05453155/. 
  12. ^ Stefano Cesco; Guenter Neumann; Nicola Tomasi; Roberto Pinton; Laure Weisskopf (April 2010). “Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition”. Plant and Nutrition 329 (1): 1-25. doi:10.1007/s11104-009-0266-9. http://link.springer.com/article/10.1007/s11104-009-0266-9. 
  13. ^ https://www.jstage.jst.go.jp/article/kagakutoseibutsu/52/12/52_799/_pdf
  14. ^ Sims GK, Dunigan EP; Dunigan (1984). “Diurnal and seasonal variations in nitrogenase activity (C2H2 reduction) of rice roots”. Soil Biology and Biochemistry 16 (1): 15–18. doi:10.1016/0038-0717(84)90118-4. 
  15. ^ Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN; Campbell; Powell; Wolfe; Callaway; Thelen; Hallett; Prati et al. (2006). “Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms”. PLoS Biology 4 (5): e140. doi:10.1371/journal.pbio.0040140. PMC 1440938. PMID 16623597. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440938/ 

参考文献