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Abstract

In this paper, we present multimodal deep neural net-

work frameworks for age and gender classification, which

take input a profile face image as well as an ear image.

Our main objective is to enhance the accuracy of soft bio-

metric trait extraction from profile face images by addi-

tionally utilizing a promising biometric modality: ear ap-

pearance. For this purpose, we provided end-to-end mul-

timodal deep learning frameworks. We explored different

multimodal strategies by employing data, feature, and score

level fusion. To increase representation and discrimination

capability of the deep neural networks, we benefited from

domain adaptation and employed center loss besides soft-

max loss. We conducted extensive experiments on the UND-

F, UND-J2, and FERET datasets. Experimental results in-

dicated that profile face images contain a rich source of in-

formation for age and gender classification. We found that

the presented multimodal system achieves very high age and

gender classification accuracies. Moreover, we attained su-

perior results compared to the state-of-the-art profile face

image or ear image-based age and gender classification

methods.

1. Introduction

Estimating soft biometric traits is a popular research area

in biometrics [12, 13, 28, 23]. It has been shown that the soft

biometric traits enable to describe subjects better and affect

the identification performance affirmatively [12, 13, 18].

Age and gender are among the mostly used soft biometric

traits.

In recent years, deep convolutional neural network

(CNN) based approaches [17, 22, 30] have been commonly

used for automatic age and gender classification. Gen-

erally, frontal or close to frontal face images have been

used in these studies [17, 18, 10, 34, 22]. There have also

been studies about gender classification from ear images

[7, 14, 16, 30, 11, 1, 19, 24, 21, 5] and profile face im-
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Figure 1. Overview of the multimodal, multitask age and gender

classification framework.

ages [3], and combination of them as well [33]. However,

there is only one recent work [30] that performs age classifi-

cation from ear images and one that performs age estimation

from profile face images [3].

In this paper, we presented various end-to-end multi-

modal deep CNN frameworks, which performed multitask

learning for age and gender classification using ear and pro-

file face images as shown in Figure 1. Although profile face

images, when cropped using a large bounding box, can con-

tain ear appearance, the main motivation to utilize a multi-

modal system instead is to avoid the presence of irrelevant

features. That is, when we expand the bounding box of

the profile face images, hair and background information

are also included in the image, which we found to degrade

the performance in our experiments. In the proposed mul-

timodal networks, we explored three different fusion meth-

ods. These are: Data fusion —intensity fusion, spatial fu-

sion, channel fusion—, feature fusion, and score-level fu-

sion. As deep CNN models, we utilized VGG-16 [26] and

ResNet-50 [9]. To increase representation and discrimina-

tion capability of the multimodal deep neural networks, we

benefited from domain adaptation and employed center loss

besides softmax loss. In summary, our contributions are

listed as following:

• We presented multimodal age and gender classifica-

tion systems that take profile face and ear images as

input. The proposed systems perform end-to-end mul-

timodal, multitask learning.



• We have comprehensively explored various ways of

utilizing multimodal input for age and gender classifi-

cation. We employed three different data fusion meth-

ods, as well as feature and score level fusion.

• We performed domain adaptation in order to adapt the

pretrained CNN models, namely VGG-16 and ResNet-

50, to the ear domain. For this, we generated the ex-

tended version of the Multi-PIE ear dataset that was

presented in a previous work [6] and named it Multi-

PIE extended-ear dataset. Moreover, to learn more dis-

criminative features, we utilized center loss in combi-

nation with the softmax loss.

• We conducted extensive experiments on the UND-F,

UND-J2, and FERET datasets for gender classifica-

tion, and only on the FERET dataset for age classi-

fication, since no age information is available in the

UND-F and UND-J2 datasets. We achieved state-of-

the-art age and gender classification results on these

datasets.

• We presented the first study on age classification using

ear images that is conducted on a publicly available

dataset, namely, FERET, in contrast to the previous

work [30], in which an internal dataset was used. In ad-

dition, compared to this previous work, we improved

the age classification accuracy from 52% to 67.59%

for classifying five age groups.

2. Related Work

In this section, we briefly reviewed the age and gender

classification studies that use ear and profile face images.

In [7], authors used ear-hole as a reference point and the

distance between this point and additional seven points are

calculated to extract features. With these features, the best

result is achieved by a k-nearest neighbor classifier with

90.42% accuracy on an internal dataset, which contains 342

samples. In [33], ear and profile face images are used for the

gender classification. Support vector machine (SVM) clas-

sifier is employed with histogram intersection kernel. Score

level fusion is utilized to increase the performance. Exper-

iments are conducted on the 2D ear images of the UND-F

dataset. Multimodal system’s performance is found to be

97.65%, while face-only accuracy is 95.42% and ear-only

accuracy is 91.78%. In [14], features are extracted with Ga-

bor filters and these features are then classified using ma-

jority voting. In total, 128-dimensional features are utilized

and 89.49% classification accuracy is achieved on the UND-

J2 dataset. In [16], gender classification experiments are

conducted on both 2D and 3D ear images of UND-F and

UND-J2 datasets. In the experiments, Histogram of Indexed

Shapes features are extracted, SVM is used for classification

and 92.94% accuracy is obtained. In [3], authors investi-

gated the usability of profile face image in such cases that

frontal face cannot be captured. The experimental results

are conducted on four different datasets. Three types of

ResNet architectures, ResNet-50, ResNet-101, ResNet-152,

are employed for feature extraction and sparse partial least-

squares regression is used with extracted features. Accord-

ing to the experiments on FERET dataset, the best result is

obtained using ResNet-152 features with 5.50 mean abso-

lute error (MAE). In [30], the authors present a study on age

and gender classification from ear images. They employed

both a geometric-based —distances between ear landmarks

and area information— and an appearance-based represen-

tation —deep CNNs. The authors conducted their exper-

iments on an internal dataset and found that appearance-

based representation is more useful [30].

In this work, we improved the previous results on age

and gender classification from ear and profile face images

by benefiting from domain adaptation, center loss, and mul-

timodal fusion. We have proposed end-to-end multimodal

deep learning frameworks and further increased the classi-

fication accuracies.

3. Methodology

In this section, we present employed CNN models and

explain proposed multimodal, multitask approach. We also

describe the benefited transfer learning and domain adapta-

tion strategies.

3.1. CNN Models and Loss Functions

We employed two different well-known deep CNN mod-

els, which are VGG-16 [26] and ResNet-50 [9]. In VGG-

16, there are 13 convolutional layers and 3 fully-connected

layers. To prevent overfitting, dropout method [27] was em-

ployed. Softmax loss was used in order to produce proba-

bilities for the classification task. In addition, in this work

we utilized combination of softmax loss and center loss. We

also used weight decay as a regularizer in the training phase

in order to prevent overfitting. Weight decay parameter is

set to 0.001 in the experiments. The other deep CNN model

that is used in this work is ResNet-50. In contrast to the

VGG-16, there are no fully-connected layers except the out-

put layer in the ResNet-50. There exists a global pooling

layer between the convolutional part and the output layer.

The input size of both of these networks is 224× 224.

We utilized center loss [29] with softmax loss in order to

obtain more discriminative features. The main motivation

behind center loss is to provide features that are closer to

corresponding class center. The distance between features

and related class center is measured and the total center loss

is calculated. Then, center loss part and softmax loss are

summed to calculate the final loss. The center loss tries to

produce closer features for each class center but it is not



responsible of providing separable features. Thus, this is

complemented by softmax loss. Besides, for the total loss

value, there is a coefficient for center loss that determines

the effect over total loss. The formula of the total loss is

presented in Equation 1. The first part of the formula is the

softmax loss and the second part is the center loss. In the

center loss formula, cyi
represents yith class center and xith

feature. In the experiments, λ coefficient is selected as 0.1

according to the results obtained on the validation set.
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3.2. Multimodal and Multitask CNN

We investigated the performance of age and gender clas-

sification using ear and profile face images both separately,

as unimodal systems, and together as a multimodal, multi-

task system. As can be seen from Figure 2, we explored

three end-to-end multimodal architectures. For all experi-

ments, we have employed VGG-16 [26] and ResNet-50 [9]

models with center loss [29]. For the total loss calculation

in multimodal, multitask age and gender classification ex-

periments, we have combined all losses that come from age

and gender prediction of the network. The final loss is cal-

culated using the formula presented in Equation 2.

Ltotal = β ∗ (Ltotalage
) + (1− β) ∗ (Ltotalgender

) (2)

According to the above formula, the calculation of total

age and gender losses are based on summation of the soft-

max loss and multiplication of the center loss with λ coef-

ficient as explained before. After the measurements of the

total age and gender losses, we have combined these loss

values using β coefficient. The main motivation behind in-

troducing the β coefficient is that since gender classification

result is significantly high, we have tried to highlight age

classification loss for the final loss. With this coefficient, we

can basically change the effect of age-specific and gender-

specific losses over total loss. In the experiments, we have

tried several different β coefficient and according to the ob-

tained results on the validation set, we have achieved the

best performance with β = 0.75 value.

3.3. Fusion Methods

In this section, we present the multimodal fusion meth-

ods that are illustrated in Figure 2.

3.3.1 Data Fusion

To perform data fusion, we have employed three different

methods, namely spatial fusion, intensity fusion, and chan-

nel fusion. In spatial fusion, we concatenate profile face and

ear images side-by-side. In the concatenated image, left half

of the image contains profile face image and right half in-

cludes ear image, as can be seen from Figure 3 (b). In chan-

nel fusion, we have concatenated images along channels.

That is, our input data is [224, 224, 3] dimensional, after

channel-based concatenation our input data becomes [224,

224, 6]. While the first three channels belong to profile face

image, the remaining 3 channels contain ear image. Finally,

in intensity fusion, we average pixel intensity values of the

profile face and ear images as shown in the Figure 3 (c).

3.3.2 Feature Fusion

For the feature-based fusion strategy, we have trained two

separate CNN models, one of them takes profile face im-

age as input and the other one takes ear image as input.

While the representation part (convolutional part) of these

networks have been trained separately, the outputs of the

last convolution layers have been concatenated and fed to

the classifier part. For example, for VGG-16, thirteen con-

volutional layers are the separate part of the networks and

three fully connected layers are the common part of the mul-

timodal system. In VGG-16, the size of the output vector of

each representation is 1 × 4096. Two vectors are then con-

catenated making a 1×8192 dimensional feature vector and

fed to the fully connected layers. For ResNet-50, we have

combined the outputs of the last layer before global average

pooling layer, then the combined vector is passed through

global average pooling layer and a fully-connected layer,

respectively.

3.3.3 Score Fusion

In this method, we have performed two individual training

with different CNN models. While one CNN model has

been trained on profile face images, the other one has been

trained with ear images. Then, for the score-based fusion,

we have tested each profile face image and ear image with

related models. After that, for each profile face and ear im-

age that belong to the same subject, we have acquired prob-

ability scores and measured the confidence score of each

model according to five different confidence score calcula-

tion methods that are presented in Table 1. Later, we have

selected the prediction of the model that has the maximum

confidence score.

3.4. Transfer Learning and Domain Adaptation

For convolutional neural networks, it is very common

and have been shown to be useful [32, 25, 18] to bene-

fit from previously trained models, more specifically the

models that have been trained on the large-scale ImageNet

dataset [4]. This approach, transfer learning, helps to adapt

the successful CNN models to the problems, where only

a limited amount of data is available. A way of applying



Figure 2. Multimodal fusion methods. (a) presents employed three different data fusion methods. In the first one, named as intensity fusion,

we have averaged profile face and ear images’ pixel intensity values. In the second approach, spatial fusion, we have combined profile face

and ear images side-by-side. In the last method, channel fusion, we have concatenated profile face and ear images in depth, i.e. along their

channels. (b) presents feature fusion. The representation part of the networks has been trained separately and outputs of these parts have

been concatenated. This concatenated feature vector then fed to the classification part. In (c), score fusion, two different networks have

been trained separately, then score-based concatenation has been performed according to the probability scores of the networks.

transfer learning is to perform fine-tuning. In this approach,

the parameters of the pretrained model are used to initialize

CNN models’ weights instead of using random initial val-

ues. Then these model weights are further updated using the

target dataset. During fine-tuning, depending the similarity

between target dataset domain and pretrained dataset do-

main, and the size of the target dataset, some layers’ weights

can be frozen or all layers’ weights can be updated.

Since it has been shown that [18] transferring a pre-

trained model from a closer domain leads to better perfor-

mance, we have benefited from a large-scale ear dataset,

which is named as Multi-PIE ear dataset [6]. As the name

implies, this dataset was constructed by running an auto-

matic ear detector on the profile and close-to-profile face

images of the Multi-PIE face dataset [8]. This way, 17183

ear images of 205 subjects were detected [6]. In this work,



Figure 3. Visualization of employed data fusion approaches. (a)

contains original ear and profile face images. (b) represents side-

by-side concatenation, which is spatial fusion and (c) is the aver-

age of the profile face and ear images, that is intensity fusion.

Method Formula

Basic c = s[0]
d2s c = s[0]− s[1]
d2sr c = 1− (s[1]/s[0])

avg-diff c = 1
M−1

∑M

i=1(s[0]− s[i])

diff1 c =
∑M−1

i=1 ( s[i−1]−s[i]
i

)

Table 1. Confidence score calculation methods for score-based fu-

sion. In the formulas, c represents confidence score of the corre-

sponding CNN model and s is an array that contains probabilities

for each class from high to low value.

we have extended Multi-PIE ear dataset [6] and named it

as Multi-PIE extended-ear dataset. The coordinates of the

detected ear images of the Multi-PIE ear dataset [6] have

been shared A. We have used these ear coordinates and ad-

ditionally, we have executed our improved ear detection al-

gorithm on the other images of Multi-PIE dataset that were

not listed in the Multi-PIE ear dataset. This way, we have

acquired new ear images in addition to the ones in the Multi-

PIE ear dataset [6] and reached 39185 ear images. The co-

ordinates of this extended-ear dataset will be shared B as

well. Compared to the Multi-PIE ear dataset, we provided

a significant increase in the dataset size. For training, we

have first initialized the CNN models with the parameters

of the pretrained CNN models that were trained on the Im-

ageNet dataset. Then, by utilizing the Multi-PIE extended-

ear dataset, we have updated the CNN models and adapt

them to the ear domain. Afterwards, we have benefited

from adapted pretrained models and further updated them

by training on the target ear datasets. Experimental results

have validated that this learning strategy, that is by perform-

ing domain adaptation via an intermediate fine-tuning step,

and by this way using the CNN models that were adapted

to the ear domain instead of directly using the CNN models

that were trained on a generic image classification dataset,

helped to improve the performance of both age and gender

classification tasks.

Ahttps://github.com/iremeyiokur/multipie ear dataset
Bhttps://github.com/iremeyiokur/multipie extended ear dataset

Figure 4. Sample images from FERET dataset [20]. The first col-

umn contains the original images, the second column contains

sample detected ear images, and the last column contains detected

profile face images.

4. Experimental Results

In this section, we provide information about used

datasets, experimental setups, implementation details, and

our results, respectively.

4.1. Datasets

Multi-PIE Extended-ear Dataset contains 39185 ear

images. This dataset was constructed by running an auto-

matic ear detector on the profile and close-to-profile face

images of the Multi-PIE face dataset [8]. As explained in

the Section 3.4, this dataset was used to adapt the pretrained

CNN models to the ear domain.

FERET [20] is one of the most well-known face

datasets. Sample images from FERET are shown in Fig-

ure 4. For our experiments, we used both ear and profile

face images. We utilized dlib library [15] to detect profile

faces. In order to detect the ear regions, we run an off-

the-shelf ear detector [2]. This way we obtained 1397 ear

images.

UND-F [31] contains both 2D and 3D ear images. In this

work, we only used 2D ear images. There are 942 profile

face images that belong to 302 different subjects. We run

the aforementioned off-the-shelf ear detector [2] and crop

ear regions from profile face images. We utilized dlib li-

brary [15] for detecting profile face images. This dataset

was employed to benchmark gender classification accuracy,

since it was also used in the previous work on gender clas-

sification from ear images [16, 33].

UND-J2 [31] is another dataset that was utilized to

benchmark gender classification accuracy in previous work

[14, 16]. It includes 2430 profile face images. As in the

UND-F dataset, we detected the ear regions by applying the

off-the-shelf ear detector [2] and we employed dlib [15] to

detect profile faces.



Model Data Age Acc. Gender Acc.

VGG-16 Ear 60.97% 97.56%

VGG-16 Profile 65.73% 95.81%

ResNet-50 Ear 60.97% 98.00%

ResNet-50 Profile 62.37% 94.05%

Table 2. Unimodal age and gender classification results on FERET

dataset [20].

4.2. Implementation Details

In order to have domain adapted pretrained deep models,

we have performed fine-tuning on Multi-PIE extended ear

dataset with VGG-16 [26] and ResNet-50 [9] CNN models.

For this, we have splitted Multi-PIE extended ear dataset

into training, validation, and test sets. 80% of the images

have been assigned to the training set, and the remaining

20% has been assigned evenly to the validation and test sets.

The same percentage of training, validation, and test splits

are also applied in the age and gender classification experi-

ments on FERET, UND-F, and UND-J2 datasets.

For age classification task, we have five different age

groups based on the following age ranges: 18-28, 29-38,

39-48, 49-58, 59-68+. These classes have been selected ac-

cording to the previous work about age classification from

ear images [30]. According to the [30], the changes in the

ear can be observable between these age groups. These age

classes include 419, 435, 316, 169, and 58 ear and profile

face images. While the number of images for train, valida-

tion, and test is 1110, 144, and 143 respectively. Note that

we have split data into train-validation-test sets with respect

to the data distribution per class.

In all experiments, we have set learning rate to 0.0001.

We have dropped learning rate by 0.1 in every 25 epochs.

We have also used L2 regularization with 0.001 coefficient

and center loss [29] with 0.1 coefficient as mentioned in

Section 3.1. Moreover, to prevent overfitting, we have

dropped neurons with 75% probability value during train-

ing. On the other hand, we have not dropped them in test

phase. While we have selected batch size as 32 for the uni-

modal experiments, we have chosen batch size as 16 during

multimodal experiments due to memory constraints.

4.3. Unimodal Results

In this section, we present unimodal experiments, which

are based on profile face and ear images separately. We

have fine-tuned VGG-16 [26] and ResNet-50 [9] CNN mod-

els for age and gender classification tasks with FERET

dataset [20]. The obtained results are presented in Table 2.

In this table, first column contains used CNN model, second

column contains information about data, which can be ear

image or profile face image and, finally, last two columns

show test accuracies of age and gender classification.

Model Fusion Age Acc. Gender Acc.

VGG-16 A-1 61.83% 92.33%

ResNet-50 A-1 57.49% 91.63%

VGG-16 A-2 67.59% 99.11%

ResNet-50 A-2 62.71% 99.11%

VGG-16 A-3 62.05% 93.03%

ResNet-50 A-3 58.53% 92.33%

VGG-16 B 67.28% 98.16%

ResNet-50 B 66.44% 97.56%

VGG-16 C-1 63.76% 97.90%

ResNet-50 C-1 63.06% 98.00%

VGG-16 C-2 63.06% 97.90%

ResNet-50 C-2 62.02% 98.00%

VGG-16 C-3 63.06% 97.90%

ResNet-50 C-3 62.02% 98.00%

VGG-16 C-4 63.76% 97.90%

ResNet-50 C-4 63.06% 98.00%

VGG-16 C-5 63.76% 97.90%

ResNet-50 C-5 63.06% 98.00%

Table 3. Age and gender classification results of the three differ-

ent fusion methods that are explained in Section 3.3. In the fusion

column, A, B, and C correspond to data, feature, and score fu-

sion methods, respectively. In method A, A-1, A-2, and A-3 are

channel fusion, spatial fusion, and intensity fusion methods, re-

spectively. In C, C1, C2, C3, C4, and C5 represent different con-

fidence score calculation methods that are presented in Table 1.

C-1 means the first formula of the Table 1 is used, C-2 means the

second formula in the table is employed and etc.

According to Table 2, we have achieved the best age clas-

sification result with VGG-16 model using profile face im-

ages with 65.73% classification accuracy. While ResNet-50

performance on profile face images is slightly lower than

VGG-16 performance, both models have achieved similar

accuracy with ear images. The best gender classification

result which is 98.00%, is obtained with ear images using

ResNet-50 CNN model and VGG-16 result is very close to

this result. Although age classification performance is bet-

ter with profile face images, ear images are found to be more

useful than profile face images in gender classification. All

these results indicate that ear and profile face images con-

tain useful cues for age and gender classification. However,

age classification needs further investigation because of the

relatively low performance compared to that of gender clas-

sification.

4.4. Multimodal Results

In this section, we have presented multimodal and multi-

task age and gender classification experiments using VGG-

16 and ResNet-50 CNN architectures. Table 3 shows age

and gender classification results based on different fusion

methods. First column contains name of the employed



Method/Model Dataset Data Accuracy

Gender Classification

Distance+KNN [7] Internal Ear 90.42%

GoogLeNet [30] Internal Ear 94.00%

BoF+SVM [33] UND-F Ear 91.78%

HIS+SVM [16] UND-F Ear 92.94%

HIS+SVM [16] UND-J2 Ear 91.92%

Gabor+Voting [14] UND-J2 Ear 89.49%

BoF-SVM [33] UND-F Profile 95.43%

BoF-SVM [33] UND-F Multi 97.65%

Ours FERET Multi 99.11%

Ours UND-F Multi 100%

Ours UND-J2 Multi 99.79%

Age Classification

Yaman et al. [30] Internal Ear 52.00%

Yaman et al.* [30] FERET Ear 58.53%

Ours FERET Multi 67.59%

Table 4. Comparison of the proposed methods with previous

works. While first part contains gender classification results, sec-

ond part presents age classification results. According to the re-

sults, we have achieved the state-of-the-art results for age and

gender classification. We have implemented the proposed method

in [30] and to have a fair comparison, we have tested it also on

FERET dataset [20]. The result of this method on FERET dataset

is presented with * symbol.

CNN model as in the unimodal experiments. Second col-

umn contains fusion methods that are data (A), feature (B),

and score (C) fusion methods, respectively. In this column,

A-1 indicates channel fusion, A-2 indicates spatial fusion,

and A-3 indicates intensity fusion that are explained in Sec-

tion 3.3.1. The B is the feature fusion method that is also

explained in Section 3.3.2. Lastly, for C, which is the score-

level fusion, we have used five different confidence score

calculation methods. These methods are explained in Sec-

tion 3.3.3. Next two columns present test accuracies of the

age and gender classification tasks, respectively.

According to the experimental results, the best age clas-

sification performance is achieved with VGG-16 model us-

ing A-2 fusion method which is the spatial fusion. However,

the feature-based results, B, are pretty close to the data fu-

sion method and feature fusion with ResNet-50 is around

4% better than all the other fusion types with ResNet-50

model. Generally, except spatial fusion method, other two

data fusion methods are not as powerful as feature-based

and score-based fusion strategies especially for gender clas-

sification.

In gender classification experiments, we have achieved

the best performance again with spatial fusion as in the age

classification experiments. Both the VGG-16 and ResNet-

50 CNN models achieve 99.11% classification accuracy

with spatial fusion.

All these results indicate that the spatial fusion and

feature-based fusion methods are effective multimodal fu-

sion strategies for extracting soft biometric traits from pro-

file face and ear images.

4.5. Comparison with Stateoftheart

In Table 4, we have compared age and gender classifi-

cation performance of our proposed method with previous

works. We have achieved the state-of-the-art performance

on both tasks, however, used dataset in this work is not the

same as the ones used in previous work [30] for age clas-

sification task. Because of that, we have implemented and

used the previous work on age classification [30]. We have

followed the same strategy with them and presented the ob-

tained result with * symbol in the table. Besides, we have

conducted gender classification experiments on the UND-F

and UND-J2 datasets [31], which are benchmark datasets

for gender classification from ear images. As a result, we

have obtained the state-of-the-art results on both datasets

with our spatial fusion method and feature-based fusion

method. We have achieved 100% accuracy on the UND-

F dataset [31] and 99.79% accuracy on the UND-J2 dataset

[31]. For age classification, we have otained 67.59% accu-

racy, with spatial fusion, that is around 9% better than the

accuracy achieved by the method presented in [30].

5. Conclusion

In this paper, we presented different end-to-end multi-

modal deep learning frameworks for age and gender clas-

sification, which takes profile face and ear images as input.

We employed domain adaptation in order to adapt the pre-

trained CNN models, namely VGG-16 and ResNet-50, to

the ear domain. To learn more discriminative features, we

combined center loss with softmax loss. We conducted ex-

tensive experiments on the UND-F, UND-J2, and FERET

datasets for gender classification, and on the FERET dataset

for age classification. We showed that by combining profile

face and ear image, we can achieve very high accuracies.

Spatial fusion and feature fusion methods have led to signif-

icant performance improvements. We achieved the state-of-

the-art gender classification accuracies on the UND-F and

UND-J2 datasets. In addition, we improved the age classi-

fication accuracy. To the best of our knowledge, this is the

first study on age classification using ear images that is con-

ducted on a publicly available dataset, FERET, in contrast

to the previous work [30], in which authors used an internal

dataset. Compared to the reported age classification accu-

racy in this previous work [30], we achieved around 9% im-

provement for five class age group classification on FERET

dataset.
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