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Abstract

Remote sensing image classification aims to assign se-

mantic label for each input pixel. In this paper, we pro-

pose a Multi-Scale Weighted Branch Network (MSWBN)

for this dense prediction task. Inspired by attention mod-

ule, which is commonly adopted to enhance the informative

features among the dense feature maps in the deep network,

we firstly introduce a Hierarchical Weighted branch Module

(HWM). The HWM is designed to extract multi-scale infor-

mation from the backbone simultaneously with a weighted

branches architecture, whose branch weights are generated

from lower layers of the backbone. Then, a Low level fea-

tures Branch Module (LBM) is proposed to embed informa-

tion with high resolution, where the weighted sum of out-

put from the HWM and low level features is calculated as

the dense prediction of the proposed Multi-Scale Weighted

Branch Network. The proposed method outperforms extist-

ing best models on the large scale remote sensing image

classification dataset (GID) in terms of both efficiency and

accuracy.

1. Introduction

Remote sensing image classification is a widely con-

centrated dense prediction task which can be applied to

fields like urban planning, land-use survey and so on. Re-

mote sensing images contain abundant spectral information,

based on which many researchers have been focusing on

spectral features extraction [28, 34, 32, 6, 37]. Meanwhile,

object-oriented methods [43, 41, 42] utilize spatial informa-

tion to process the prediction. With the remarkable progress

achieved by the Convolutional Neural Network (CNN) in

computer vision tasks [15, 30, 29, 10, 11, 9, 26], the com-

munity has focused on end-to-end dense prediction net-

works [20, 1, 22, 27, 8, 40, 17, 36, 24, 19, 21, 14, 31] for

years. However, how to adapt algorithms to multiscale ob-

jects and extract the features fitting different type of input

images are still two main challenges we need to face with.
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In this paper, we propose a Multi-Scale Weighted Branch

Network architecture to address these two issues in the fol-

lowing aspects.

Firstly, inspired by the parallel multi-scale architecture

proposed by several previous works [40, 36, 5, 4, 3], we de-

sign a Hierarchical Weighted Branch Module, which con-

tains three hierarchies of dense connceted architecture with

multi-scale operations. The DenseASPP module [36] em-

beds atrous convolutions with different dilation rates in a

dense connection way, which covers the feature map in a

large scale range with a very dense manner way. Along

this way, we build Hierarchical Weighted Branch Module

(HWM) with three hierarchies: (1) Each hierarchy consists

of several parallel convolutions with not only different dila-

tion rates but also various kernel sizes to extract multi-scale

semantic information; (2) We assign each operation with a

importance weight which is generated from the lower layers

of the chosen backbone, which ensures the proposed mod-

ule flexible enough to make adjustment according to the in-

put image.

Secondly, we design a Low level features Branch Mod-

ule (LBM) which connects lower layers with the output of

HWM. The shortcut architecture [20, 23, 27, 19, 5] pro-

posed in previous works alleviates the gradient vanishing

problem. Moreover, with high resolution information from

the lower layers, the whole architecture can retain details

like object boundary. However, ignoring the differences be-

tween the input images will limit the generalization ability

of the algorithm. Based on this insight, we extend the short-

cut architecture proposed in pervious works by assigning a

branch weight to make a trade-off between the lower level

information and the output of HWM.

Different with other works, our proposed Multi-Scale

Weighted Branch Network (MSWBN) employs weighted

branches architecture to fuse multi-scale information while

ensuring the flexibility. Moreover, we analyse the influence

of our proposed branch weights on the gradients of the cor-

responding architecture, base on which we add gates to con-

trol each branch weight in HWM and LBM. These gates can

help to filtrate the gradients of bad branches. Our main con-

tributions are threefold.
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• we propose HWM and LBM that contain several par-

allel sub-modules to fuse features with various multi-

scale information and keep flexibility to make adjust-

ment on the basis of input images.

• We analyse the influence of our proposed branch

weights on the gradients of the corresponding architec-

ture and design branch weight gates to make the whole

architecture focus on beneficial branches.

• Our proposed method outperforms extisting best mod-

els on the large scale remote sensing image classifi-

cation dataset (GID) in terms of both efficiency and

accuracy.

2. Related Work

Our model draws on the success of several areas, includ-

ing end-to-end dense prediction architectures, multi-scale

features extraction, neural architecture search and attention

modules.

End-to-end dense prediction architectures. Early

works [28, 34, 32, 6, 37] in remote sensing image classifi-

cation adopt two-stage process, namely features extraction

and classification. Besides, some works [43, 41, 42] con-

centrate on object-oriented process which assigns semantic

labels to the preprocessed object segmentation results. Re-

cently, with end-to-end architectures [20, 1, 22, 27, 25, 35]

showing significant success in the application to the dense

prediction task in computer vision field, researchers begin

to employ end-to-end architectures in remote sensing im-

age classification [21, 14, 31]. Due to the characteristics of

the dense prediction problem, [20, 1, 22, 27] design deriv-

able decoder modules to extend the output spatial size of

the traditional convolutional neural network [15, 30, 29],

by which the whole architecture can be end-to-end training

and output the dense prediction map directly.

Along this way, we utilize HWM as the encoder module

to extract high level features with complex semantic infor-

mation. Then we propose LBM as the decoder module to

fuse the high level features with low level features which

contain information with high resolution and more details.

The whole network can be trained end-to-end.

Multi-scale features extraction. Identifying multi-

scale objects simultaneously is a main challenge we need to

face with when dealing with the dense prediction tasks like

remote sensing image classification. Hierarchical down-

sampling operations always cause the loss of spatial in-

formation, which makes multi-scale features extraction in-

tractable. Typically, two types of networks that exploit mul-

tiscale features are mainly employed.

First type of networks [20, 23, 27, 19] connect differ-

ent level features by using the shortcut architecture. [20]

employs several shortcuts within the upsampling process

and [13] proposes Gated Feedback Refinement Network (G-

FRNet) where hierarchical refinements are processed by us-

ing the shortcut architecture.

On the other hand, [39, 40, 17, 5, 4, 3] introduce par-

allel multiscale modules to generate features with different

receptive fields simultaneously, with which the whole ar-

chitecture can accommodate multiscale objects to some de-

gree. As a parallel atrous convolution module, ASPP [3, 4]

employs different dilation rates to extract multi-scale infor-

mation. Moreover, [39, 40, 17, 33] exploit multi-path mod-

ules to fuse inputs with different scales.

Along this way, we introduce HWM which contains

three hierarchies of dense connceted architecture with

multi-scale operations. Each hierarchy can be seen as a

parallel multi-scale module. Similar with DenseASPP [36]

this design can generate features with more varied receptive

fields.

Neural architecture search and Attention modules.

Neural architecture search [2, 18] aims to get best model

architecture among a potential architecture set.[2] explores

the construction of meta-learning techniques for dense

image prediction.[18] attains state-of-the-art performance

without any ImageNet pretraining.

On the other hand, inspired by SENet [12], many re-

searchers adopt attention modules to enhance the informa-

tive features. [7] proposes gated sum to control the informa-

tion flow which can be seen as a special attention module.

[38] designs a module called Attention Refinement Module

(ARM) to refine the features of several stages. Pyramid At-

tention Network (PAN) [16] employs special attention mod-

ules where weights map for the lower features are generated

by higher features.

In this work, we combine the merits of neural architec-

ture search and attention modules. The branch weights in

HWM and LBM control the importance of each branch

which can be seen as a soft architecture search to seek

the best structure during the training process. Meanwhile,

the branch weights are generated from the lower layers of

the backbone which can also be seen as a special attention

weights map for the corresponding structure. Similar with

attention module, this special attention weights can be ad-

justed to the input images, which ensures the flexibility of

the whole architecture.

3. Methods

In this section, we first introduce our proposed Hierarchi-

cal Weighted branch Module (HWM). Then the discussion

of Low level features Branch Module (LBM) is presented.

Finally, we analyse the influence of the branch weights in

our proposed modules on the gradients in the training pro-

cess. The whole algorithm is illustrated in Fig. 1



Figure 1. Illustration of our proposed Multi-Scale Weighted Branch Network (MSWBN). We utilize three low layer features from the

backbone and Hierarchical Weighted branch Module (HWM) extracts the multi-scale features with scale-sensitive weights. Then Low

level features Branch Module (LBM) fuses the low level features with the output of HWM to generate the dense prediction. A weighted

sum operation is also applied here. We can choose whether to skip the clip gates in each module.

3.1. Hierarchical Weighted branch Module

Firstly, we discuss our proposed HWM which consists

of three hierarchies of parallel multi-scale branches. As il-

lustrated in Fig. 2, these branches contain convolution oper-

ations with different kernel sizes and dilation rates.

Concretely, given the output features of the backbone,

denoted as Fb, we apply a set of convolution operations

So = {Ok,r|k ∈ {1, 3, 5, 7}, r ∈ {0, 2, 4}} over it, where k

denotes the kernel size and r denotes the dilation rate. In im-

plementation, we utilize 8 combinations of k and r, namely,

there 8 elements in set So. Each operation generates output

for one branch. Then, our proposed HWM receives output

features from lower layer of the backbone, which we de-

note as L1. A convolution operation, denoted as C1, with

kernel size as 3 is applied over L1 to squeeze the number

of channels to 8. We then pass the output of C1 through a

global average pooling layer, denoted as GP , and a softmax

function to get the corresponding branch weight, denoted as

W 1 = (W 1
k1,r1, ...,W

1
k8,r8), for the first hierarchy.

Consequently, we have:

W 1 = softmax(GP (C1(L1))) (1)

Fh1 =
∑

k,r

W 1
k,rOk,r(Fb) (2)

Moreover, the second hierarchy and the third hierarchy

receive the output of first hierarchy and second hierarchy as

the input and we also apply So over them. Similarly, we can

get:

W 2 = softmax(GP (C2(L2))) (3)

Fh2 =
∑

k
′
,r

′

W 2
k
′
,r

′Ok
′
,r

′ (Fh1) (4)

W 3 = softmax(GP (C3(L3))) (5)

Fh3 =
∑

k
′′
,r

′′

W 3
k
′′
,r

′′Ok
′′
,r

′′ (Fh2) (6)

where W 2
k
′
,r

′ and W 3
k
′′
,r

′′ are the branch weights for

the second hierarchy and third hierarchy respectively and

k′, k′′ ∈ {1, 3, 5, 7}, r′, r′′ ∈ {0, 2, 4}. C2 and C3 are the

convolution operations with kernel size of 3, while L2 and

L3 denote two feature maps from the lower layer.

The proposed HWM can be seen as a weighted graph

where connected nodes can be seen as a squential convolu-

tion operations. With this design, we can get features which

contain information with various scales of receptive fields.

For instance, with (1) and (2), we have:

Fh2 =
∑

k
′
,r

′

W 2
k
′
,r

′Ok
′
,r

′ (
∑

k,r

W 1
k,rOk,r(Fb)) (7)

Different operations in So can generate features with dif-

ferent receptive fields. Thus, with this compound function

form, features that contain information with different com-

binations of receptive fields are created. Similar with [36],

the output receptive field of a sequential two convolution

operations can be calculated as RF1 + RF2 − 1, where

RFi is the receptive field of one convolution operation in

the sequential. Given the number of operations in So as 8,

there are 64 weighted convolution operation sequential with

length of two in (4). Thus, Fh2 contains information with

dozens scales of receptive field.



Figure 2. The illustration of Hierarchical Weighted branch Mod-

ule (HWM). We use three hierarchies of parallel convolution op-

erations to extract features with various scales and each hierarchy

receives branch weights from lower layers.

Moreover, the proposed HWM can be approximate to a

weighted assembling of 512 sequential convolution oper-

ations with length of three, where information with more

various scales of receptive field can be extracted simultane-

ously.

3.2. Low level features Branch Module

In order to fuse features with high resolution, we propose

a Low level features Branch Module (LBM) to connect low

level features with the output of HWM. As illustrated in

Fig. 3, LBM receives the output of HWM and fuses it with

features from lower layer of the backbone.

Specifically, LBM contains a weights fusion block and

a features fusion block. The weights fusion block receives

three branch weights for hierarchies in HWM and generates

the weight for the weighted sum operation in features fu-

sion block. Denoting three branch weights for hierarchies

in HWM as W 1, W 2 and W 3, the weights fusion block con-

catenates these weights and applys a Multilayer Perceptron,

denoted as MLP , over it. We have:

Wbin = softmax(MLP (Concat(W 1,W 2,W 3))) (8)

where Concat denotes the concatenation operation.

Wbin = (W 1
bin,W

2
bin) is the weight for the weighted sum

operation, which is a vector with length of two, and the

softmax function ensures the normalization.

Then, the features fusion block receives Fh3 and L3

which has been used to generate the branch weights for the

third hierarchy in HWM. We apply two sequences of oper-

ations over the Fh3 and L3. The kernel size of these con-

volution operations is 3 and the number of kernels in the

last convolution operation of these two sequences is fitted

Figure 3. The illustration of Low level features Branch Module

(LBM). LBM receives output of HWM and fuses it with low level

features by using weighted sum operation.

to the dense prediction problem. Then the weighted sum

operation is carried. We have:

Fout = W 1
binCH +W 2

binCL (9)

where CH and CL are the output of convolution opera-

tion sequences applied on Fh3 and L3. Finally, we get Fout

as the output and the loss function is:

Loss =
∑

k,c

Label(k, c)log(Fs out(k, c)) (10)

where Label(k, c) denotes the label of kth pixel for the

cth category and Fs out(k, c) denotes the output value of

kth pixel for the cth category in Fout after the softmax op-

eration. The loss function is optimized by using stochastic

gradient descent (SGD).

3.3. Analyses of grandient and branch weights gate

Analyses of grandient As we mentioned in Sec. 3.1,

the proposed HWM can be seen as a weighted graph. In

the similar way, the LBM can also be seen as a graph

with two edges. The branch weights in these two pro-

posed modules can be seen as the weights for the edges in a

graph. These weights control the information flow and de-

cide which branch has more impact on final output. In this

section, we analyse how the weights influence the whole ar-

chitecture. For instance, we analyse the ∂Loss
∂W 1

bin

. With (9)

and (10), we can get:

∂Loss

∂W 1
bin

=
∑

k,c

CH(k, c)(Fs out(k, c)− Label(k, c)) (11)

Supposing Label(k, c) = 0, then we get Fs out(k, c) −
Label(k, c) > 0. If CH(k, c) tends to be large and far above



zero, ∂Loss
∂W 1

bin

will be positive and far above zero. If CH(k, c)

tends to be small and far below zero, ∂Loss
∂W 1

bin

will be nege-

tive and far below zero. We can get similar result when we

suppose Label(k, c) = 1.

Also, the analyses of the ∂Loss
∂W 2

bin

will show the similar

result. These analyses mean the weight for the branch in

LBM which generates the opposite result to the groundtruth

label tends to be smaller during the SGD optimization.

Moreover, we consider the branch weights in HWM and

suppose the whole network smooth enough. And then we

consider the loss as the function of Fh1 at position p and

has the optimal with respective to it. Thus we can use the

second order power series expansion approximation and we

have:

Loss =Loss(op) + o((Fh1(p)− op)2)

(Fh1(p)− op)
∂Loss

∂Fh1(p)
(op)+

1

2
(Fh1(p)− op)2

∂2Loss

∂Fh1(p)2
(op)

(12)

where the op denotes the optimal and o(∗) represents the

higher order infinitesimal. Obviously, ∂Loss
∂Fh1(p)

(op) = 0 and

∂2Loss
∂Fh1(p)2

(op) ≥ 0. With (2) and (12), we have

∂Loss

∂W 1
k,r

≈
∑

p

Ck,r
p (Fh1(p)− op)

∂2Loss

∂F 2
h1(p)

(op) (13)

where Ck,r
p is the value of Ok,r(Fb) at position p which

is a constant with respective to Fh1(p). With (13), we know

that if Fh1(p) > op and Ok,r(Fb) tends to be larger than

zero, ∂Loss
∂W 1

k,r

will tend to be larger than zero. If Fh1(p) < op

and Ok,r(Fb) tends to be smaller than zero, ∂Loss
∂W 1

k,r

will tend

to be larger than zero. We can get similar result with respect

to W 2
k,r and W 3

k,r.

These analyses also show that weight for the branch

which generates the opposite result to the groundtruth la-

bel tends to be smaller during the SGD optimization. The

characteristic we get above ensures the whole architecture

focuses on the branch which is more suitable when given

input images.

Branch weights gate Based on this insight we choose

relu gate to control the gradient flow if the weight is below

the threhold. Specifically, in HWM we have:

cl(weight) =

{

θ weight < θ

weight weight ≥ θ
(14)

In LBM, to avoid the small output tensor, we times clip

gate by 2. And then, we have:

∂Loss

∂CH(k, c)
= 2cl(W 1

bin)(Fs out(k, c)−Label(k, c)) (15)

∂Loss

∂C
k,r
p

≈cl(W 1
k,r)(Fh1(p)− op)

∂2Loss

∂F 2
h1(p)

(op) (16)

∂Loss

∂∗
=

∂Loss

∂cl(W 1
bin)

∂cl(W 1
bin)

∂∗
(17)

∂Loss

∂∗
=

∂Loss

∂cl(W 1
k,r)

∂cl(W 1
k,r)

∂∗
(18)

The ∗ in (17) and (18) denotes the element which is used

to generate W 1
bin and W 1

k,r respectively. With (15) and

(16), we know that we can control the gradient flow for the

branches by setting the θ in clip gate. And then, with (17)

and (18), we can get that the gradient flow of the weight

generators which belong to unsuitable branches tend to col-

lapse to zero and make no impact on the whole architecture

while the weights become smaller.

4. Experimental Analysis

In order to study the effectiveness and efficiency of our

proposed method, we evaluate it on Gaofen Image Dataset

(GID) [33] which is a large scale remote sensing image clas-

sification dataset. We first slice the images in GID into

patches with size of 512×512. Then we select resnet101

as our backbone and study the effectiveness of each mod-

ule we propose in terms of the output accuracy and training

speed. Also we compare the proposed method with some

existing best models and our method achieves the state-of-

the-art. Firstly, we study how the number of channels of

operations in HWM influences the output result and training

speed. Then, we study the influence of clip gate in HWM

and LBM on the output accuracy. Futhermore, to verify the

adaptive capacity of our proposed architecture, we resam-

ple the image patches in GID and evaluate models on an

extremely label-imbalanced dataset.

In details, we choose resnet101 as the backbone and set

initial learning rate as 0.007. We employ ’poly’ policy with

power of 0.9. We train the network on Titan X with memory

of 12G for 20 epochs. We use stochastic gradient descent

to update parameter and set the batch size as 10, momen-

tum as 0.9 and weight decay as 0.0001. As the same as

deeplabv3plus, we use random flip and random scale be-

tween 0.5 and 2 as the data augmentation. We set θ in HWM

and LBM as 0.125 and 0.5 respectively.

4.1. Gaofen Image Dataset

GID consists of 150 GF-2 satellite images which cover

more than 70,000 km2. Widespread over several cities

in China and containing rich geographic information in-

cluding morphology characters and so on, GID presents 5

land cover categories, which is built-up, farmland, forest,

meadow, and water, and a background category. The back-

ground category represents the unknown area which can not

be identified artificially. In this work, we slice the images



Figure 4. The illustration of patches of GID. The first row shows how we generate the patches GID dataset. The second and third row show

examples of patches dataset.

in GID into patches with size of 512×512 to fit the archi-

tecture we propose. The examples of patches in GID can

be seen in Fig. 4. Same with [33], we first evaluate mod-

ules we introduce by utilizing 120 training images and 30

testing images, which are sliced into 22560 training patches

and 5640 testing patches. Then we compare our method

and existing best models on testing patches GID images.

Finally, the resampling is processed to generate a extremely

label-imbalanced dataset where the adaptive capacity of the

dense prediction models can be verified.

4.2. Number of channels of operations in HWM

Firstly, we study the influence of the operations in

HWM. In implementation, we choose So = {Ok,r|k ∈
{1, 3, 5, 7}, r ∈ {0, 2, 4}} containing 8 different operations

which are O1,0, O3,0, O5,0, O5,2, O5,4, O7,0, O7,2 and

O7,4. These convolution operations with different kernel

sizes and dilation rates can extract features with different

scales. Meanwhile, the number of channels of these convo-

lution operations influences the model capacity. Generally,

models with inadequate model capacity will suffer under-

fitting and fail to acquire complex conception correspond-

ing to the concerned problem. On the other hand, models

with overmuch model capacity will suffer over-fitting and

lose the model generalization.

In this section, we set the number of channels of con-

volution operations as 64, 96, 128, and 160. With this set-

ting, we can seek for the appropriate model capacity for this

dense prediction problem. The result is shown in Tab.1.We

Method mIOU OA training speed

64 channels 90.13 96.34 0.7467 sec/step

96 channels 89.79 96.27 0.7967 sec/step

128 channels 90.49 96.40 0.8188 sec/step

160 channels 90.24 96.05 0.8725 sec/step

Deeplabv3plus 89.87 96.17 0.9603 sec/step

Table 1. The evaluation of HWM containing operations with dif-

ferent numbers of channels on testing patches GID dataset. mIOU

represents mean Intersection over Union and OA represents over-

all accuracy.

can see that operations in HWM with 128 channels attain

a appropriate model capacity and whole architecture out-

performs deeplabv3plus. Training speed decreases with

the number of channels increasing. It is worth mentioning

that our best model only needs about 85% of training time

compared with deeplabv3plus, which mainly because of the

fewer parameters in weighted sum operation compared with

concatenation + convolution.

4.3. Clip gates

As we analyse in Sec.3.3, theoretically, the weights for

branches which tend to generate opposite output to the

groundtruth label are getting smaller during the SGD opti-

mization. We utilize this characteristic to process a soft neu-

ral architecture search which reduces the influence of bad

parts of the whole architecture instead of removing them.

Moreover, we propose clip gates to control the gradient flow



Figure 5. Visualization results on patches GID dataset when employing our best model. The first and forth cols are the origin patches

images. The second and fifth cols are the dense prediction we generate. The third and sixth cols are the groundtruth

which can reduce the impact made by bad parts of the whole

architecture. In this section, we do ablation experiment to

study the experimental influence of the clip gates in HWM

and LBM. We first remove the clip gates in HWM and LBM

respectively and then we wipe out the clip gates in the whole

architecture. With these settings, we can figure out how the

clip gates in each module influence the output result. The

result is shown in Tab.2, Tab.3 and Tab.4.

Method mIOU OA

64 channels-no gates in HWM 89.71 96.18

96 channels-no gates in HWM 88.78 95.92

128 channels-no gates in HWM 89.10 96.06

160 channels-no gates in HWM 89.93 96.16

Table 2. The evaluation of the MSWBN without clip gates in

HWM on testing patches GID dataset.

Method mIOU OA

64 channels-no gates in LBM 89.53 96.14

96 channels-no gates in LBM 89.45 96.03

128 channels-no gates in LBM 89.95 95.99

160 channels-no gates in LBM 89.83 96.15

Table 3. The evaluation of the MSWBN without clip gates in LBM

on testing patches GID dataset.

We can see that removing clip gates causes accuracy loss

in varying degrees compared with Tab.1 which verifies the

advantage of clip gates and supports the analyses in Sec.3.3.

Method mIOU OA

64 channels-no gates 89.40 96.04

96 channels-no gates 88.84 95.99

128 channels-no gates 89.21 95.99

160 channels-no gates 88.40 95.61

Table 4. The evaluation of the MSWBN without clip gates in the

whole architecture on testing patches GID dataset.

4.4. Comparing with state­of­the­art methods

In this section, we compare our proposed methods

with several extisting state-of-the-art algorithms including

deeplabv3plus and object-oriented method proposed in [33]

on testing patches GID dataset. Different with method pro-

posed in [33], our MSWBN and deeplabv3plus are end-to-

end. The result is shown in Tab.5

Method mIOU OA

MSWBN 90.49 96.40

Deeplabv3plus 89.87 96.17

Object-oriented method in [33] 87.25 95.76

Table 5. The evaluation of the MSWBN on testing patches GID

dataset compared with existing best methods.

We can see that our proposed MSWBN achieves the best

result which outperforms deeplabv3plus by 0.62 in mIOU

and 0.23 in OA. And also, MSWBN outperforms method

proposed in [33] by 3.24 in mIOU and 0.64 in OA.



4.5. Resampling experiment

To verify the adaptive capacity of the proposed architec-

ture, we resample the patches we used before and generate a

extremely label-imbalanced patches dataset. Generally, im-

balanced dataset will cause the model collapse and ignore

the underprivileged categories. Supposing there are 99% of

farmland pixels and 1% of built-up pixels, the model which

monotonously predicts farmland category will get a overall

accuracy of 99%. This collapsed model is useless in actual

production. Benefited from flexible branch weights which

can adjust the architecture with respective to the input im-

ages, the method we propose can learn which branch weight

should be larger while the input image contains underpriv-

ileged categories. The statistical distribution of the patches

dataset we used before and the resampled extremely label-

imbalanced patches dataset can be viewed in Tab. 6.

built-up framland water forest meadow

original train 143‰ 571‰ 173‰ 69‰ 45‰

original test 243‰ 431‰ 260‰ 61‰ 4‰

resampled train 168‰ 538‰ 181‰ 68‰ 45‰

resampled test 150‰ 490‰ 285‰ 76‰ 0.7‰

Table 6. The statistical distribution of the original and resampled

patches GID dataset

We can see that the meadow category in resampled test

dataset is extremely underprivileged which challenges the

adaptive capacity of models.

We set So = {O1,0, O3,0, O5,0, O5,2, O5,4} which con-

tains only 5 convolution operations with different kernel

sizes and dilation rates in this experiment. We modify the

θ to 0.2 in HWM and evaluate with mIOU metrics which

concerns the underprivileged categories. The experimental

result is shown in Tab.7

Method mIOU

5 operations with no LBM 87.28

5 operations with LBM 87.99

5 operations with LBM and clip gates 89.09

deeplabv3plus 84.57

Table 7. The evaluation of the MSWBN on resampled patches GID

dataset.

We can see that our proposed architecture keeps the ac-

curacy while the dataset is extremely label-imbalanced.

5. Conclusion

In this work, we propose a MSWBN consisting of HWM

and LBM. HWM extracts multi-scale features simultane-

ously through three hierarchies of weighted parallel convo-

lution operations. LBM fuses the low layer information to

the output dense prediction. Moreover, we analyse the gra-

dient of branch weights in HWM and LBM based on which

we propose the clip gate to control the gradient flow. Then,

we evaluate the proposed method on GID dataset. The ex-

periment results show that our proposed MSWBN outper-

forms existing best models and the clip gates do improve

the output accuracy which verifies our analyses of the gra-

dients in each module.
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[6] Begüm Demir and Lorenzo Bruzzone. Histogram-based at-

tribute profiles for classification of very high resolution re-

mote sensing images. IEEE Trans. Geoscience and Remote

Sensing, 54(4):2096–2107, 2016. 1, 2

[7] Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu, and

Gang Wang. Context contrasted feature and gated multi-

scale aggregation for scene segmentation. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018. 2

[8] Jun Fu, Jing Liu, Yuhang Wang, and Hanqing Lu. Stacked

deconvolutional network for semantic segmentation. CoRR,

abs/1708.04943, 2017. 1

[9] Ross B. Girshick. Fast R-CNN. In 2015 IEEE Interna-

tional Conference on Computer Vision, ICCV 2015, Santi-

ago, Chile, December 7-13, 2015, pages 1440–1448, 2015.

1

[10] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jiten-

dra Malik. Rich feature hierarchies for accurate object de-

tection and semantic segmentation. In 2014 IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR

2014, Columbus, OH, USA, June 23-28, 2014, pages 580–

587, 2014. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for



visual recognition. IEEE Trans. Pattern Anal. Mach. Intell.,

37(9):1904–1916, 2015. 1

[12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In 2018 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,

June 18-22, 2018, pages 7132–7141, 2018. 2

[13] Md. Amirul Islam, Mrigank Rochan, Neil D. B. Bruce, and

Yang Wang. Gated feedback refinement network for dense

image labeling. In 2017 IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2017, Honolulu, HI,

USA, July 21-26, 2017, pages 4877–4885, 2017. 2

[14] Pascal Kaiser, Jan Dirk Wegner, Aurélien Lucchi, Martin
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