Structural consequences of D-amino acids in collagen triple-helical peptides

Biopolymers. 1999 Apr;49(4):297-302. doi: 10.1002/(SICI)1097-0282(19990405)49:4<297::AID-BIP4>3.0.CO;2-Q.

Abstract

The effects of racemization of aspartic acid on triple-helical formation have been studied using a "host-guest" peptide approach where selected guest Gly-Xaa-Yaa triplets were included within a common acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide frame-work. Four guest triplets, Gly-Asp-Hyp and Gly-Asp-Ala where Asp is either L-Asp or D-Asp were studied. Thermal stability data indicated that incorporation of D-Asp residues prevented triple-helix formation in phosphate buffered saline, although triple-helical structures were formed in a stabilizing solvent, 67% aqueous ethylene glycol. In this solvent the melting temperatures of D-Asp containing peptides were more than 30 degrees C lower than the corresponding peptides containing L-Asp. For Gly-Asp-Ala peptides, but not Gly-Asp-Hyp, peptides, melting profiles indicated that a mixture of the D- and L-Asp containing peptides were able to form heterotrimer triple-helical molecules. These studies illustrate the dramatic destabilizing effect of D-amino acids on the triple-helix stability, but indicate that they can be accommodated in this conformation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amino Acids / chemistry*
  • Circular Dichroism
  • Collagen / chemistry*
  • Drug Stability
  • Molecular Sequence Data
  • Peptides / chemistry
  • Protein Conformation
  • Protein Structure, Secondary
  • Stereoisomerism
  • Thermodynamics

Substances

  • Amino Acids
  • Peptides
  • Collagen