The induction of breast cancer is a long process, containing a series of biological events that drive a normal mammary cell towards malignant growth. However, it is not known when the initiation of breast cancer occurs. One hypothesis is that a high estrogenic environment during the perinatal period increases subsequent breast cancer risk. There are many sources of extragonadal estrogens, particularly in the diet. The purpose of this paper is to review the evidence that a high maternal intake of dietary fats increases serum estrogens during pregnancy and increases breast cancer risk in daughters. Our animal studies show that a high maternal consumption of corn oil consisting mainly of linoleic acid (omega-6 polyunsaturated fatty acid, PUFA), increases both circulating estradiol (E2) levels during pregnancy and the risk of developing carcinogen-induced mammary tumors among the female rat offspring. A similar increase in breast cancer risk occurs in female offspring exposed to injections of E2 through their pregnant mother. Our data suggest that the mechanisms by which an early exposure to dietary fat and/or estrogens increases breast cancer risk is related to reduced differentiation of the mammary epithelial tree and increased number of mammary epithelial cell structures that are known to the sites of neoplastic transformation. These findings may reflect our data of the reduced estrogen receptor protein levels and protein kinase C activity in the developing mammary glands of female rats exposed to a high-fat diet in utero. In summary, a high dietary linoleic acid intake can elevate pregnancy estrogen levels and this, possibly by altering mammary gland morphology and expression of fat- and/or estrogen-regulated genes, can increase breast cancer risk in the offspring. If true for women, breast cancer prevention in daughters may include modulating the mother's pregnancy intake of some dietary fats.