Adoptive immunotherapy with anti-CD3/IL-2 activated tumor-draining lymph node (LN) T cells is capable of eradicating tumor established at various histological sites. Tumor-specific effector lymphocytes have recently been identified to be LN T cells with down-regulated L-selectin (L-selectin-). Using fluorochrome labeling, the present study determined the early trafficking pattern of systemically transferred cells. In mice with 10-day established pulmonary 3-methylcholanthrene (MCA) 205 metastases, accumulation of cells in tumors was evident as early as 2 h after i.v. cell transfer, and, by 24 h, >50-fold higher numbers of cells were seen in metastases than in normal tissues. Similarly, transferred cells selectively infiltrated s.c. tumors, albeit at a lower rate. Analysis of the transferred cells isolated from recipient mice revealed that tumor-infiltrating cells were mostly L-selectin- (>95%). By contrast, only 24% and 58% L-selectin- cells were found in the LN and spleen, respectively. The ability of L-selectin- cells to accumulate at tumor sites was confirmed by the transfer of purified cell populations. Despite this selective tumor infiltration, the trafficking pattern did not reflect antigenetic specificity, and tumor regression occurred only after the transfer of tumor-specific effector cells. These results, thus, suggest that there are two distinct mechanisms operative in successful adoptive immunotherapy. Early infiltration of tumors by transferred cells is dictated by the physiological properties of cells and is independent on their immunologic specificity. Tumor regression, however, requires immunologically specific interactions at the site of tumor.