Insulin acutely up-regulates p85alpha phosphatidylinositol 3-kinase (p85alphaPI 3-K) mRNA levels in human skeletal muscle (Laville, M., Auboeuf, D., Khalfallah, Y., Vega, N., Riou, J. P., and Vidal, H. (1996) J. Clin. Invest. 98, 43-49). In the present work, we attempted to elucidate the mechanism of action of insulin in primary cultures of human muscle cells. Insulin (10(-7) M, 6 h of incubation) induced a 2-fold increase in p85alphaPI 3-K mRNA abundances (118 +/- 12 versus 233 +/- 35 amol/microgram total RNA, n = 5, p < 0.01) without changing the expression levels of insulin receptor, IRS-1, glycogen synthase, and Glut 4 mRNAs in differentiated myotubes from healthy subjects. The effect is most probably due to a transcriptional activation of the p85alphaPI 3-K gene because the half-life of the mRNA was not affected by insulin treatment (4.0 +/- 0.8 versus 3.1 +/- 0.4 h). PD98059 (50 microM) did not modify the insulin response but increased p85alphaPI 3-K mRNA levels in the absence of insulin, suggesting that the mitogen-activated protein kinase pathway exerts a negative effect on p85alphaPI 3-K mRNA expression in the absence of the hormone. On the other hand, the insulin effect was totally abolished by LY294002 (10 microM) and rapamycin (50 nM). In addition, overexpression of a constitutively active protein kinase B increased p85alphaPI 3-K mRNA levels. These results indicate that the phosphatidylinositol 3-kinase/PKB/p70S6 kinase pathway is required for the stimulation by insulin of p85alphaPI 3-K gene expression in human muscle cells.