Recent studies have shown a crucial role of intercellular adhesion molecule 1 (ICAM-1) in expansion of infarction after focal cerebral ischemia. The purpose of the present study was to assess whether ICAM-1 is involved in selective neuronal vulnerability and reactive gliosis after transient forebrain ischemia. ICAM-1 knockout mice and wild-type mice were subjected to transient forebrain ischemia for 5, 10 or 15 min, and the hippocampus and caudoputamen were examined 7 days later with conventional histological and immunohistochemical methods. Bilateral common carotid artery occlusion with less than 10% of baseline cortical microperfusion for 10 or 15 min resulted in ischemic neuronal damage in the hippocampus and caudoputamen. The frequency and the severity of neuronal damage were similar in wild-type and knockout mice. Proliferation of reactive astrocytes in the hippocampus was also similar in both types of mice. Therefore, it is highly unlikely that ICAM-1 plays a key role in delayed neuronal death after transient global ischemia or in astroglial responses after ischemic neuronal injury.