Galectin-1 induces apoptosis of immature thymocytes and activated T cells, suggesting that galectin-1 regulates cell death in the thymus during selection and in the periphery following an immune response. Although it is known that galectin-1 recognizes lactosamine (Gal-GlcNAc) as a minimal ligand, this disaccharide is ubiquitously expressed on a variety of cell surface glycoproteins. Thus, susceptibility to galectin-1 may be regulated by the presentation of lactosamine on specific oligosaccharide structures created by specific glycosyltransferase enzymes. The core 2 beta-1, 6-N-acetylglucosaminyltransferase (core 2 GnT) creates a branched structure on O-glycans that can be elongated to present multiple lactosamine sequences. In the thymus, the core 2 GnT is expressed in galectin-1-sensitive thymocyte subsets. In the periphery, an oligosaccharide epitope created by the core 2 GnT is expressed on galectin-1-sensitive activated T-cells. In this report, we demonstrate that expression of the core 2 GnT was necessary and sufficient for galectin-1-induced death of murine T cell lines. In addition, overexpression of the core 2 GnT in mice increased the susceptibility of double positive thymocytes to galectin-1. These data demonstrate that expression of a specific glycosyltransferase can control susceptibility to galectin-1, suggesting that developmentally regulated glycosyltransferase expression may be a mechanism to modulate cell death during T cell development and function.