The potential role of p38 mitogen-activated protein (MAP) kinase in platelet-derived growth factor receptor-alpha (PDGF-Ralpha) gene expression was investigated using cultured rat pulmonary myofibroblasts. p38 MAP kinase was constitutively expressed in myofibroblasts and activated by interleukin (IL)-1beta. A pyridinylimidazole compound, SB203580, completely inhibited the ability of p38 MAP kinase activity to phosphorylate PHAS-1 substrate. SB203580 inhibited IL-1beta-induced up-regulation of PDGF-Ralpha mRNA and protein in a concentration-dependent manner. Other kinase inhibitors, including the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor PD98059, did not block up-regulation of PDGF-Ralpha. The IL-1beta-induced increase in the number of (125)I-PDGF-AA-binding sites at the cell surface was reduced >70% by pretreatment with SB203580. Accordingly, an enhancement of PDGF-AA-stimulated DNA synthesis following IL-1beta pretreatment was blocked >70% by SB203580. SB203580 did not affect IL-1beta-induced ERK activation, yet enhanced IL-1beta-induced JNK activation approximately 2-fold. Treatment of cells with SB203580 after inhibition of transcription by actinomycin D decreased the half-life of IL-1beta-induced PDGF-Ralpha mRNA from >4 to approximately 1.5 h. Moreover, pretreatment of cells with cycloheximide blocked induction of PDGF-Ralpha mRNA by IL-1beta, suggesting that de novo protein synthesis was required for PDGF-Ralpha mRNA stabilization. These data indicate that p38 MAP kinase regulates PDGF-Ralpha expression at the translational level by signaling the synthesis of an mRNA-stabilizing protein.