The tripartite subdivision of lymphocytes into B cells, alphabeta T cells, and gammadelta cells has been conserved seemingly since the emergence of jawed vertebrates, more than 450 million years ago. Yet, while we understand much about B cells and alphabeta T cells, we lack a compelling explanation for the evolutionary conservation of gammadelta cells. Such an explanation may soon be forthcoming as advances in unraveling the biochemistry of gammadelta cell interactions are reconciled with the abnormal phenotypes of gammadelta-deficient mice and with the striking differences in gammadelta cell activities in different strains and species. In this review, the properties of gammadelta cells form a basis for understanding gammadelta cell interactions with antigens and other cells that in turn form a basis for understanding immunoprotective and regulatory functions of gammadelta cells in vivo. We conclude by considering which gammadelta cell functions may be most critical.