We have shown that brief exposure to amphetamine leads to sustained glutamate-dependent increases in expression of the neurotrophic, neuroprotective factor, basic fibroblast growth factor, in astrocytes in dopaminergic cell body regions and that blockade of basic fibroblast growth factor in this region prevents the development of behavioral sensitization to amphetamine. Here we examine the effects of prolonged exposure to an escalating-dose regimen of amphetamine known to induce long-lasting sensitization to amphetamine and leading to increases in neuronal dendritic length and spine density in nucleus accumbens and prefrontal cortex and to decreases in spine density in occipital cortex. Astrocytic basic fibroblast growth factor immunoreactivity was increased in both dopaminergic cell body and terminal regions one week after termination of a two-week amphetamine treatment (1-4mg/kg). These effects were not evident one week after a five-week treatment (1-9mg/kg) and, in fact, one month later basic fibroblast growth factor levels in cell body regions were decreased. In the occipital cortex, basic fibroblast growth factor immunoreactivity was decreased one week after the two-week amphetamine treatment, but was not different from that seen in saline-treated animals after the five-week treatment. Increased astrocytic basic fibroblast growth factor expression appears to be an early, but relatively prolonged, response to amphetamine exposure and seems to parallel structural changes induced by repeated drug exposure.These findings suggest that basic fibroblast growth factor may participate in the development of structural changes brought about by amphetamine. The fact that the basic fibroblast growth factor response is not maintained after prolonged intense exposure to amphetamine suggests that the factors that initially induce basic fibroblast growth factor expression are self-regulating.