Both solid- and liquid-phase combinatorial chemistry have emerged as powerful tools for identifying pharmacologically active compounds and optimizing the biological activity of a lead compound. Complementary high-throughput in vitro assays are essential for compound evaluation. Cell-based assays that use optical endpoints permit investigation of a wide variety of functional properties of these compounds including specific intracellular biochemical pathways, protein-protein interactions, and the subcellular localization of targets. Integration of combinatorial chemistry with contemporary pharmacology now represents an important factor in drug discovery and development.