Peripheral neuropathy following cisplatin treatment is a major limiting factor in cisplatin chemotherapy of cancer patients. We investigated the pathomechanism underlying cisplatin neuropathy using a mouse dorsal root ganglion neuron-neuroblastoma hybrid cell line (N18D3) developed in our laboratory. DNA fragmentation, a characteristic feature of apoptosis, was induced in hybrid neurons following treatment with cisplatin. Accumulation of p53, Fas, and Fas ligand (Fas-L) was also demonstrated in these neurons. Preincubation with N-acetylcysteine (NAC), a precursor of glutathione, blocked cisplatin-induced apoptosis completely, whereas Trolox, a vitamin E analogue, blocked it partially. Cisplatin-induced p53 accumulation was suppressed by NAC treatment, whereas p53 accumulation was retarded by Trolox treatment. In contrast, neither NAC nor Trolox showed any inhibitory effect on cisplatin-induced Fas/Fas-L accumulation. These results suggest that the neuroprotective effects of antioxidants against cisplatin-induced neurotoxicity in hybrid neurons are mediated mainly through the inhibition of p53 accumulation but not of Fas/Fas-L accumulation by these antioxidants.