Low molecular weight protein-tyrosine phosphatase controls the rate and the strength of NIH-3T3 cells adhesion through its phosphorylation on tyrosine 131 or 132

J Biol Chem. 2000 Dec 1;275(48):37619-27. doi: 10.1074/jbc.M006375200.

Abstract

The low molecular weight protein-tyrosine phosphatase (LMW-PTP) is an enzyme involved in platelet-derived growth factor (PDGF)-induced mitogenesis and cytoskeleton rearrangement. Our previous results demonstrated that LMW-PTP is able to bind and dephosphorylate activated PDGF receptor, thus inhibiting cell proliferation. Recently we have shown that LMW-PTP is specifically phosphorylated by c-Src in a cytoskeleton-associated fraction in response to PDGF, and this phosphorylation increases LMW-PTP activity about 20-fold. LMW-PTP strongly influences cell adhesion, spreading, and chemotaxis induced by PDGF stimulation, by regulating the phosphorylation level of p190Rho-GAP, a protein that is able to regulate Rho activity and hence cytoskeleton rearrangement. In the present study we investigate the physiological role of the two LMW-PTP tyrosine phosphorylation sites, using LMW-PTP mutants on tyrosine 131 or 132. We demonstrate that each tyrosine residue is involved in specific LMW-PTP functions. Both of them are phosphorylated during PDGF signaling. Phosphorylation on tyrosine 131 influences mitogenesis, dephosphorylating activated PDGF-R and cytoskeleton rearrangement, acting on p190RhoGAP. Phosphorylation on tyrosine 132 leads to an increase in the strength of cell substrate adhesion, down-regulating matrix metalloproteases expression, through the inhibition of Grb2/MAPK pathway. In conclusion, LMW-PTP tyrosine phosphorylation on both Tyr(131) or Tyr(132) cooperate to determine a faster and stronger adhesion to extracellular matrix, although these two events may diverge in timing and relative amount.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3 Cells
  • Animals
  • Cell Adhesion / physiology*
  • Cell Division / drug effects
  • Mice
  • Molecular Weight
  • Phosphorylation
  • Platelet-Derived Growth Factor / pharmacology
  • Protein Tyrosine Phosphatases / chemistry
  • Protein Tyrosine Phosphatases / metabolism
  • Protein Tyrosine Phosphatases / physiology*
  • Tyrosine / metabolism*

Substances

  • Platelet-Derived Growth Factor
  • Tyrosine
  • Protein Tyrosine Phosphatases