The study of immunoglobulin genes in multiple myeloma over the last decade has provided important information regarding biology, ontogenetic assignment, disease evolution, pathogenic consequences and tumor-specific therapeutic intervention. Detailed analysis of VH genes has revealed the clonal relationship between switch variants expressed by the bone marrow plasma cell and myeloma progenitors in the marrow and peripheral blood. Regarding VH usage, a bias was found against the V4-34 gene encoding antibodies with cold agglutinin specificity (anti-I/i), thus explaining in part the absence of autoimmune phenomena in myeloma compared to other B cell lymphoproliferative disorders. However, in some studies a substantial number of cases analyzed were carrying the rearranged Humkappav325 Vkapppa gene, known to be over utilized by B cell chronic lymphocytic leukemia clones and possessing autoantibody binding activity. VH genes accumulate somatic hypermutations following a distribution compatible with antigen selection, but with no intraclonal heterogeneity. The analysis of Vkappa genes indicates a bias in usage of Vkappa family members; somatic hypermutation, in line with antigen selection, of the expressed Vkappa genes is higher than any other B cell lymphoid disorder. Similar conclusions were reached for Vlambda genes; in this case, the analysis raises the controversial issue of N nucleotide insertion at Vlambda-Jlambda junctions, apparently as a result of TdT activity. A complementary imprint of antigen selection as evidenced by somatic hypermutation of either the VH or VL clonogenic genes has been observed. The absence of ongoing somatic mutations in either VH or VL genes gives rise to the notion that the cell of origin in myeloma is a post-germinal center memory B cell.