Leakage of electric current through cardiac structures surrounding the ventricle is a primary source of error during ventricular volume measurements using a conductance catheter. This error can be represented as a leakage volume, VL. VL is generally estimated by a saline-bolus method, and is assumed constant throughout the cardiac cycle. However, dynamic changes in ventricular volume and cardiac wall thickness could change VL. To estimate VL, a dynamic finite element model of the heart was developed based on MR images. Conductance measurements were simulated using a modeled conductance catheter, and true VL was calculated. VL varied from 22.7 ml (end-systole) to 26.4 ml (end-diastole) in the left ventricle and from 19.9 ml (end-systole) to 26.9 ml (end-diastole) in the right ventricle. The saline-bolus method underestimated VL in both the left (VL = 19.4 ml) and the right (VL = 4.1 ml) ventricular volume measurements. VL increased linearly with the ratio of blood to tissue resistivity, and changed minimally with catheter position. These results indicate that VL has to be estimated dynamically throughout the cardiac cycle to obtain accurate cardiac volume measurements. The results also show that the saline bolus method does not estimate current leakage accurately, especially in the right ventricular volume measurement.