Background: Beta radiation is effective in reducing vascular neointimal proliferation in animals after injury caused by balloon angioplasty. However, the lowest dose that can prevent restenosis after coronary angioplasty has yet to be determined.
Methods: After successful balloon angioplasty of a previously untreated coronary stenosis, 181 patients were randomly assigned to receive 9, 12, 15, or 18 Gy of radiation delivered by a centered yttrium-90 source. Adjunctive stenting was required in 28 percent of the patients. The primary end point was the minimal luminal diameter six months after treatment, as a function of the delivered dose of radiation.
Results: At the time of follow-up coronary angiography, the mean minimal luminal diameter was 1.67 mm in the 9-Gy group, 1.76 mm in the 12-Gy group, 1.83 mm in the 15-Gy group, and 1.97 mm in the 18-Gy group (P=0.06 for the comparison of 9 Gy with 18 Gy), resulting in restenosis rates of 29 percent, 21 percent, 16 percent, and 15 percent, respectively (P=0.14 for the comparison of 9 Gy with 18 Gy). At that time, 86 percent of the patients had had no serious cardiac events. In 130 patients treated with balloon angioplasty alone, restenosis rates were 28 percent, 17 percent, 16 percent, and 4 percent, respectively (P=0.02 for the comparison of 9 Gy with 18 Gy). Among these patients, there was a dose-dependent enlargement of the lumen in 28 percent, 50 percent, 45 percent, and 74 percent of patients, respectively (P<0.001 for the comparison of 9 Gy with 18 Gy). The rate of repeated revascularization was 18 percent with 9 Gy and 6 percent with 18 Gy (P=0.26).
Conclusions: Intracoronary beta radiation therapy produces a significant dose-dependent decrease in the rate of restenosis after angioplasty. An 18-Gy dose not only prevents the renarrowing of the lumen typically observed after successful balloon angioplasty, but actually induces luminal enlargement.