The matrix metalloproteinase (MMP) family, comprising more than 20 isoforms, modulates the extracellular milieu by degrading extracellular matrix (ECM) proteins. Because MMP is one of the few groups of proteinases capable of hydrolysing insoluble fibrillar proteins, they are likely to play crucial roles in regulating both normal and pathophysiological processes in the brain. However, little is yet known about their possible neuronal functions due presumably to their unusual redundancy and to the absence of a complete catalogue of isoforms. As an initial step in understanding the MMP system in the brain, we analysed an expression spectrum of MMP in rat brain using RT-PCR and discovered a novel brain-specific MMP, MT5-MMP. MT5-MMP was the predominant species among the nongelatinase-type isoforms in brain. MT5-MMP, present in all brain tissues examined, was most strongly expressed in cerebellum and was localized in the membranous structures of expressing neurons, as assessed biochemically and immunohistochemically. In cerebellum, its expression was regulated developmentally and was closely associated with dendritic tree formation of Purkinje cells, suggesting that MT5-MMP may contribute to neuronal development. Furthermore, its stable postdevelopmental expression and colocalization with senile plaques in Alzheimer brain indicates possible roles in neuronal remodeling naturally occurring in adulthood and in regulating pathophysiological processes associated with advanced age.