Bone induction by implants coated with cultured osteogenic bone marrow cells

Adv Dent Res. 1999 Jun:13:74-81. doi: 10.1177/08959374990130011801.

Abstract

The availability of osteoinductive coatings on dental and orthopedic implants will result in an improved fixation of these devices. Those cases where implants are placed in poor-quality bone or where high failure rates are obtained are especially expected to gain from such coatings. This paper presents a novel, biological approach to obtain bioactive and osteoinductive coatings on bone-replacement implant materials. This so-called tissue engineering approach utilizes osteogenic bone marrow cells that are cultured on an implant material to form a bone-like tissue. The implant materials used herein included porous calcium phosphate scaffolds and metallic plates, the latter of which were coated with a biomimetic calcium phosphate coating to facilitate cellular attachment. Bone marrow cells were obtained from a variety of species, including humans, and were grown to facilitate cellular proliferation. The cells were subsequently seeded onto the implants and cultured for an additional week to facilitate osteogenic differentiation and extracellular matrix production. The resulting hybrid implants, encompassing the biomaterial carrier and cultured bone-like tissue, were subsequently implanted subcutaneously in nude mice for 4 weeks, followed by histological examination for de novo bone formation. The results revealed that newly formed bone was seen both in porous implants and on flat metallic surfaces. This bone tissue engineering approach, therefore, offers great potential to enhance bony healing around implants in a compromised bone bed.

MeSH terms

  • Aged
  • Animals
  • Biocompatible Materials / chemistry
  • Bone Marrow Cells / physiology*
  • Calcium Phosphates / chemistry
  • Cell Adhesion
  • Cell Differentiation
  • Cell Division
  • Cells, Cultured
  • Coated Materials, Biocompatible / chemistry*
  • Electron Probe Microanalysis
  • Extracellular Matrix / physiology
  • Female
  • Goats
  • Humans
  • Male
  • Mice
  • Mice, Nude
  • Microscopy, Electron, Scanning
  • Ossification, Heterotopic / physiopathology
  • Osteogenesis / physiology*
  • Porosity
  • Prostheses and Implants*
  • Rats
  • Rats, Inbred F344
  • Skin / physiopathology
  • Surface Properties
  • Titanium / chemistry
  • Wound Healing

Substances

  • Biocompatible Materials
  • Calcium Phosphates
  • Coated Materials, Biocompatible
  • alpha-tricalcium phosphate
  • tetracalcium phosphate
  • calcium phosphate, monobasic, anhydrous
  • calcium phosphate
  • Titanium
  • calcium phosphate, dibasic, anhydrous