Photoprocesses associated with the complexation of a pyridine-functionalized C60 fullerene derivative to ruthenium- and zinc-tetraphenylporphyrins (tpp) have been studied by time-resolved optical and transient EPR spectroscopies. It has been found that upon irradiation in toluene, a highly efficient triplet-triplet energy transfer governs the deactivation of the photoexcited [Ru(tpp)], while electron transfer (ET) from the porphyrin to the fullerene prevails in polar solvents. Complexation of [Zn(tpp)] by the fullerene derivative is reversible and, following excitation of the [Zn(tpp)], gives rise to very efficient charge separation. In fluid polar solvents such as THF and benzonitrile, radical-ion pairs (RPs) are generated both by intramolecular ET inside the complex and by intermolecular ET in the uncomplexed form. Charge-separated states have lifetimes of about 10 micros in THF and several hundred of microseconds in benzonitrile at room temperature.