A fullerene derivative (5) in which a dinuclear ruthenium complex is covalently linked to a fulleropyrrolidine (FP) through a rigid spacer has been prepared through azomethine ylide cycloaddition to C60. Electrochemical and photophysical studies revealed that ground-state electronic interactions between the bimetallic ruthenium chromophore and the FP moiety are small. The absorption spectrum of 5 displays a metal-to-ligand charge transfer (MLCT) transition at about 620 nm in CH2Cl2 which is shifted by nearly 160 nm relative to that of a previously reported mononuclear dyad (8). The photophysical investigations have also shown that both in dichloromethane and acetonitrile the photoexcited MLCT state of dyad 5 transforms into the fullerene triplet excited state with a quantum yield of 0.19 and that, contrary to mononuclear dyad 8, electron transfer, if any under the applied conditions, is negligible relative to energy transfer.