Stabilization and overexpression are hallmarks of mutant p53 found in nearly 50% of human tumors. Mutations in the conformation-sensitive core domain of p53 often lead to association with molecular chaperones such as hsp70 and hsp90. Inhibition of hsp90 function accelerates mutant p53 degradation. We recently found that expression of p53 core domain mutants inhibits MDM2 degradation, suggesting that mutant p53 can modulate MDM2 functions. In this report, we show that mutant p53 mediates formation of MDM2-p53-hsp90 complexes. Release of MDM2 from the p53-hsp90 complex after DNA damage restores MDM2 but not p53 turnover, whereas dissociation of hsp90 by geldanamycin increases the degradation of both MDM2 and mutant p53. Mutant p53 degradation after hsp90 inhibition requires MDM2 expression. The interaction between MDM2 and hsp90 is disrupted by the 2A10 antibody, which recognizes a site on MDM2 important for binding to alternative reading frame (ARF). Expression of mutant p53 prevents MDM2 from binding ARF and accumulating in the nucleolus in an hsp90-dependent fashion. These results suggest that hsp90 recruited by mutant p53 conceals the ARF-binding site on MDM2 and inhibits its ubiquitin-protein isopeptide ligase function, resulting in the stabilization of both mutant p53 and MDM2.