Oxidation Reactions of Dithiocarbamate Complexes of Ruthenium(II)

Inorg Chem. 1997 Sep 24;36(20):4432-4437. doi: 10.1021/ic970053q.

Abstract

The reaction of Ru(Et(2)dtc)(2)(DMSO)(2) (Et(2)dtc = N,N-diethyldithiocarbamate; DMSO = dimethyl sulfoxide) with t-BuNC gave trans-Ru(Et(2)dtc)(2)(CN-t-Bu)(2), 1. Complex 1 crystallizes in the monoclinic space group P2(1)/n with a = 9.753(2) Å, b = 11.583(2) Å, c = 12.974(2) Å, and beta = 91.8(2) degrees for Z = 2. The crystal structure of 1 shows the trans disposition of the two isocyanides; the mean Ru-S and Ru-C distances are 2.409 and 1.977(2) Å, respectively. Treatment of [Ru(diene)Cl(2)](n)() with Na(Et(2)dtc) afforded Ru(Et(2)dtc)(2)(diene) (diene = bicyclo[2.2.1]hepta-2,5-diene (NBD), 2, 1,5-cyclooctadiene (COD), 3). Complex 2 crystallizes in the triclinic space group P&onemacr; with a = 7.316(1) Å, b = 10.346(1) Å, c = 15.123(2) Å, alpha = 103.69(2) degrees, beta = 93.54(2) degrees, and gamma = 100.61(2) degrees for Z = 2. The mean Ru-S and Ru-C distances in 2 are 2.416 and 2.137 Å, respectively. The reaction of cis-Ru(Et(2)dtc)(2)(CO)(2) with iodine gave the 2:1 molecular iodine complex cis-Ru(Et(2)dtc)(2)(CO)(2).(1)/(2)I(2) 4, which crystallizes in the monoclinic space group P2(1)/c with a = 7.347(2), b = 22.227(2) Å, c = 12.891(2) Å, and beta =95.98 (2) degrees for Z = 4. The mean Ru-S and Ru-C and the I-I distances in complex 4 are 2.427, 1.903, and 2.745(1) Å, respectively. Treatment of Ru(Et(2)dtc)(2)(DMSO)(2) with I(2) gave the linear Ru(II)-Ru(III)-Ru(III) trimer [Ru(3)(Et(2)dtc)(6)(DMSO)(2)](I(3))(2), 5, which crystallizes in the triclinic space group P&onemacr; with a = 14.125(3) Å, b = 20.829(6) Å, c = 13.658(3) Å, alpha = 97.57(2) degrees, beta = 110.01(2) degrees, and gamma = 71.25(2) degrees for Z = 2. The structure of complex 6 can be viewed as consisting of a {Ru(2)(III)(Et(2)dtc)(4)}(2+) core and a {Ru(II)(Et(2)dtc)(2)(DMSO)(2)} moiety, which are linked together via the two dithiocarbamate sulfurs of the latter. While the two Ru(III) centers are connected by a Ru-Ru single bond (Ru-Ru = 2.826(2) Å), there is no direct interaction between the Ru(III) and Ru(II) centers. Oxidation of Ru(Et(2)dtc)(2)L(2) (L = PPh(3), t-BuNC) by I(2) gave the respective [Ru(Et(2)dtc)(2)L(2)](+) cations. The reaction of cis-Ru(Et(2)dtc)(2)(PPh(3))(2) with excess tosyl azide gave the diamagnetic Ru(IV) tetrazene complex Ru(Et(2)dtc)(2)(Ts(2)N(4)), 7. Complex 7 crystallizes in the triclinic space group P&onemacr; with a = 10.380(1) Å, b = 11.322(1) Å, c = 15.310(1) Å, alpha = 106.84(2) degrees, beta = 106.87(2) degrees, and gamma = 92.63(2) degrees for Z = 2. The Ru-S and Ru-N(alpha) distances in 7 are 2.385 and 1.98 Å, respectively. The formal potentials of the Ru dithiocarbamate complexes were determined by cyclic voltammetry.