Microbial degradation of methyl tert-butyl ether (MTBE) was observed in surface water-sediment microcosms under anaerobic conditions. The efficiency and products of anaerobic MTBE biodegradation were dependent on the predominant terminal electron-accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to the toxic product, tert-butyl alcohol (TBA). In the absence of significant methanogenic activity, accumulation of [14C]TBA generally decreased, and mineralization of [U-14C]MTBE to 14CO2 generally increased as the oxidative potential of the predominant terminal electron acceptor increased in the order of SO4, Fe(III), Mn(IV) < NO3 < O2. Microbial mineralization of MTBE to CO2 under Mn(IV)-or SO4-reducing conditions has not been reported previously. The results of this study indicate that microorganisms inhabiting the sediments of streams and lakes can degrade MTBE effectively under a range of anaerobic terminal electron-accepting conditions. Thus, anaerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States.