Background: Decreased concentrations of HDL cholesterol are associated with increased cardiovascular risk. These concentrations are directly related to cholesterol efflux from cells-the first step and a key process in reverse cholesterol transport. Cholesterol efflux is mediated by the ATP-binding cassette A1 transporter (ABCA1), the rate-limiting step in the production of HDL. We aimed to assess the relation between cholesterol efflux, HDL concentrations, and arterial-wall changes in individuals with impaired ABCA1 function.
Methods: We investigated 30 individuals from families with ABCA1 mutations, and 110 controls matched for age, sex, and ethnic origin. We measured concentrations of HDL cholesterol in plasma and intima-media thickness of the carotid arteries by B-mode ultrasonography in all participants. We also measured cholesterol efflux from skin fibroblasts in nine individuals with ABCA1 mutations and in ten controls.
Findings: Individuals with ABCA1 mutations had lower amounts of cholesterol efflux, lower HDL cholesterol concentrations, and greater intima-media thicknesses than controls. An intima-media thickness at the upper limit of normal (0.80 mm) was reached by age 55 years in the ABCA1 heterozygotes, and at age 80 years in unaffected controls (p<0.0001). Additionally, strong positive correlations were seen between HDL cholesterol concentrations and cholesterol efflux (r=0.90, p=0.001), and negative correlations between apolipoprotein-AI-mediated (r=-0.61, p=0.030) and HDL-particle-mediated (r=-0.60, p=0.018) efflux and intima-media thickness in the ABCA1 mutation carriers.
Interpretation: These results show a direct relation between ABCA1-mediated cellular cholesterol efflux and arterial-wall thickness, and therefore suggest that increasing efflux could inhibit atherosclerosis progression before the manifestation of symptomatic cardiovascular disease.