Transcriptional control of the hgl5 gene of Entamoeba histolytica is mediated through an unusual core promoter composed of TATA, GAAC and Initiator elements. In the hgl5 promoter the GAAC element (AATGAACT) determines the site and rate of transcription initiation. Here we tested the role of the GAAC element in transcription activation from upstream regulatory elements (UREs) in the hgl5 promoter. We also examined the function of the GAAC element in the ferredoxin (fdx) promoter and characterized the protein binding to the GAAC element. Electrophoretic mobility shift assays (EMSA) demonstrated that the GAAC region is necessary for higher-order nuclear protein complex assembly. The function of the GAAC element in transcription activation mediated by UREs revealed that mutation of the GAAC element did not affect transcription activation mediated by the hgl5 URE4 but abrogated activation by the hgl5 URE3. We compared the role of the GAAC elements in the hgl5 and fdx promoters. Competitive gel shift assays were consistent with the same nuclear protein binding to the GAAC elements in both genes. Mutation of the GAAC element in the fdx gene decreased reporter gene expression, however, in contrast to hgl5 gene, had no effect on the site of transcription initiation. These results support a role for the GAAC element in assembly of nuclear proteins at the core promoter and in transcription activation mediated by URE3. The differing effect on transcription initiation in the hgl5 and fdx genes upon mutation of the GAAC element suggests a context-dependence of the GAAC-binding protein in gene expression.