Determination of left-right axis is a precocious embryonic event, and all phenotypic anomalies resulting from disruption of the normal lateralization process are collectively referred to as the lateralization defect. A transgenic mouse with lateralization defect and hepatic, kidney, and pancreatic anomalies has resulted from disruption of the inv gene by insertion of a transgene. The human ortholog is thus a good candidate for lateralization defect in humans, in particular in cases with associated hepatic anomalies. Here, we have identified, mapped, and characterized the INV human gene and screened a series of heterotaxic patients (with or without biliary anomalies) for mutation in this gene. In a German family of Turkish origin, we have found that all available affected and unaffected individuals are heterozygous for a mutation in the splicing donor site of intron 12 in the INV gene resulting in two different aberrant splicing isoforms. This can be explained either by a randomization of lateralization defects or, as suggested earlier, di- or trigenic inheritance, although we have been unable to detect, in this family, a mutation in genes known to be involved in the human lateralization defect ( LEFTY1, LEFTY2, ACVR2B, NODAL, ZIC3, and CFC1). In contrast to the mouse, the affected individuals have no biliary anomalies, and the absence of mutation in a series of seven cases with lateralization defect and biliary anomalies demonstrates that INV is not frequently involved in such a phenotype in humans.