Supratentorial primitive neuroectodermal tumours (sPNETs) are malignant central nervous system tumours of childhood which are histologically characterized by poorly differentiated neuroepithelial cells with the capacity for divergent differentiation into glial, neuronal, myogenic or melanotic lines. The histological differential diagnosis between sPNET and glioblastoma multiforme (GBM) may be difficult, particularly as GBMs can sometimes demonstrate a poorly differentiated PNET-like phenotype. To identify molecular genetic markers that may distinguish sPNET and GBM, we investigated 12 cerebral sPNETs and six GBMs from paediatric patients for genetic alterations of the TP53, PTEN, CDKN2A, EGFR, CDK4 and MDM2 genes, as well as for allelic loss on chromosome arms 10q and 17p. Mutations of the TP53 tumour suppressor gene were found in one of 12 sPNETs (8%) and two of six GBMs (33%). None of the sPNETs but two of six GBMs (33%, including one GBM with a TP53 mutation) showed allelic losses on chromosome arm 17p. PTEN mutations were detected in one of 12 sPNET (8%) and one of six GBMs (17%). None of the sPNETs and GBMs carried a homozygous deletion involving the CDKN2A tumour suppressor gene. No amplification of the EGFR, CDK4 or MDM2 proto-oncogenes was detected. Taken together, our results indicate that paediatric GBMs differ from sPNETs by a higher incidence of allelic losses on 17p and TP53 mutations. In addition, the patterns of genetic alterations in sPNETs and paediatric GBMs appear to be distinct from those in cerebellar medulloblastomas and adult GBMs, respectively.