Leishmania species are intracellular parasites that inhabit a parasitophorous vacuole (PV) within host macrophages and engage with the host endo-membrane network to avoid clearance from the cell. Intracellular Leishmania amastigotes exhibit a high degree of proteolytic/lysosomal activity that may assist degradation of MHC class II molecules and subsequent interruption of antigen presentation. As an aid to further analysis of the endosomal/lysosomal events that could facilitate this process, we have characterised a Leishmania homologue of the late endosomal marker, Rab7, thought to be involved in the terminal steps of endocytosis and lysosomal delivery. The Leishmania major Rab7 (LmRAB7) protein is expressed throughout the life-cycle, shows 73 and 64% identity to Trypanosoma cruzi and Trypanosoma brucei Rab7s (TcRAB7 and TbRAB7), respectively, and includes a kinetoplastid-specific insertion. The recombinant protein binds GTP and polyclonal antibodies raised against this antigen recognise structures in the region of the cell between the nucleus and kinetoplast. By immunoelectron microscopy of axenic amastigotes, Leishmania mexicana Rab7 (LmexRAB7) is found juxtaposed to and overlapping membrane structures labelled for the megasomal marker, cysteine proteinase B, confirming a late-endosomal/lysosomal localisation.
Copyright 2002 Elsevier Science B.V.