Leber's hereditary optic neuropathy (LHON), a maternally inherited form of central vision loss, is associated with mitochondrial DNA pathogenic point mutations affecting different subunits of complex I. We here report that osteosarcoma-derived cytoplasmic hybrids (cybrid) cell lines harboring one of the three most frequent LHON pathogenic mutations, at positions 11778/ND4, 3460/ND1, and 14484/ND6, undergo cell death when galactose replaces glucose in the medium, contrary to control cybrids that maintain some growth capabilities. This is a well known way to produce a metabolic stress, forcing the cells to rely on the mitochondrial respiratory chain to produce ATP. We demonstrate that LHON cybrid cell death is apoptotic, showing chromatin condensation and nuclear DNA laddering. Moreover, we also document the mitochondrial involvement in the activation of the apoptotic cascade, as shown by the increased release of cytochrome c into the cytosol in LHON cybrid cells as compared with controls. Cybrids bearing the 3460/ND1 and 14484/ND6 mutations seemed more readily prone to undergo apoptosis as compared with the 11778/ND4 mutation. In conclusion, LHON cybrid cells forced by the reduced rate of glycolytic flux to utilize oxidative metabolism are sensitized to an apoptotic death through a mechanism involving mitochondria.