Neoglycoconjugates containing 4, 8, 16, 32, and 64 terminal residues of B-disaccharide (BDI) or N-acetylneuraminic acid (Neu5Ac) attached to poly(aminoamide)-type dendrimers (PAMAMs) were synthesized. The ability of BDI conjugates to bind natural xenoantibodies (anti-BDI antibodies) and the ability of Neu5Ac conjugates to inhibit the hemagglutinin-mediated adhesion of influenza virus were studied. The biological activity of PAMAM conjugates turned out to be higher than that of free carbohydrate ligands, but less than that of multivalent glycoconjugates based on other types of synthetic polymeric carriers. A conformational analysis of PAMAM matrices and resulting conjugates was performed to determine the statistical distances between carbohydrate ligands. The computations revealed the tendency of the PAMAM chains toward compaction and formation of dense globules. The process results in a decrease in the distances between the carbohydrate ligands in the conjugates and, hence, could affect the ability of glycoconjugates to efficiently bind the polyvalent carbohydrate-recognizing proteins. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 6; see also http://www.maik.ru.