C57BL/10 (B10; H2(b)) bone marrow-derived myeloid dendritic cells (DC) propagated in GM-CSF + IL-4 were transduced with r adenoviral (Ad) vectors encoding either control neomycin-resistance gene (Ad-Neo) or murine IL-4 (Ad-IL-4) on day 5 of culture following CD11c immunomagnetic bead purification. Both Ad-Neo- and Ad-IL-4-transduced DC displayed upregulated surface MHC class II and costimulatory molecules (CD40, CD80, CD86). Ad-IL-4 DC secreted higher levels of bioactive IL-12p70 after CD40 ligation or LPS stimulation than either Ad-Neo or unmodified DC. Only Ad-IL-4 DC produced IL-12p70 in primary MLR, in which they induced augmented proliferative responses of naïve allogeneic C3H/HeJ (C3H; H2(k)) T-cells. Compared with Ad-Neo DC, Ad-IL-4 DC were also more effective in priming naïve allogeneic recipients to exhibit specifically enhanced anti-donor T-cell proliferative and CTL responses. T-cells primed in vivo 7 days previously with Ad-IL-4 DC displayed enhanced secretion of Th2 (IL-4, IL-10) but also higher Th1 cytokine (IFNgamma) production following ex vivo challenge with donor alloAg. Moreover, pretreatment of vascularized heart graft recipients with i.v. Ad-IL-4 DC, 1 week before transplant, significantly accelerated rejection and antagonized the therapeutic effect of anti-CD40L (CD154) mAb. These data contrast markedly with recently reported inhibitory effects of autologous Ad-IL-4 DC on autoimmune inflammatory disease.