1. Acetaminophen, an analgesic and antipyretic drug with weak antiinflammatory properties, has been suggested to act as a tissue-selective inhibitor of prostaglandin H synthases (PGHSs) (e.g. COX-1 and COX-2) through its reducing activity, that is influenced by the different cellular levels of peroxides. 2. We have studied the effects of acetaminophen on inducible and constitutive prostanoid biosynthesis in monocytes and platelets in vitro. To discriminate between the inhibitory effect of the drug on PGHS-isozymes vs PGE-synthases (PGESs), parallel measurements of PGE(2) and thromboxane (TX) B(2) were carried out. Since antioxidant enzymes and cofactors, present in plasma, may affect acetaminophen-dependent inhibition of prostanoids, comparative experiments in whole blood vs isolated monocytes were performed. 3. Acetaminophen inhibited LPS-induced whole blood PGE(2) and TXB(2) production, in a concentration-dependent fashion [IC(50) microM (95% confidence intervals): 44 (27-70) and 94 (79-112), respectively]. Therapeutic plasma concentrations (100 and 300 microM) of the drug more profoundly reduced PGE(2) than TXB(2) (71 +/- 3 vs 54 +/- 4 and 95 +/- 0.8 vs 78 +/- 2%, respectively, mean +/- s.e.mean, n = 6, P < 0.01). 4. Differently, in isolated monocytes stimulated with LPS, both PGE(2) and TXB(2) production was maximally reduced by only 60%. 5 At 100 and 300 microM, the drug caused a similar and incomplete inhibition of platelet PGE(2) and TXB(2) production during whole blood clotting (45 +/- 4 vs 54 +/- 4 and 75 +/- 2 vs 75 +/- 1%, respectively, mean +/- s.e.mean, n = 4). 6 In conclusion, therapeutic concentrations of acetaminophen caused an incomplete inhibition of platelet COX-1 and monocyte COX-2 but in the presence of plasma, the drug almost completely suppressed inducible PGE(2) biosynthesis through its inhibitory effects on both COX-2 and inducible PGES.