In plants, water and anion parameters are linked, for example through the integration of nutritional signaling and the response to diverse stress. In this work, Arabidopsis thaliana is used as a model system to dissect the genetic variation of these parameters by quantitative trait loci (QTL) mapping in the 415 recombinant inbred lines of the Bay-0 x Shahdara population. Water, nitrate, chloride, and phosphate contents were measured at the vegetative stage in the shoots of plants grown in controlled conditions. Two contrasting nitrogen (N) conditions were studied, one leading to the complete depletion of the nitrate pool in the plants. Most of the observed genetic variation was identified as QTL, with medium but also large phenotypic contributions. QTL colocalization provides a genetic basis for the correlation between water and nitrate contents in nonlimiting N conditions and water and chloride contents in limiting N conditions. The 34 new QTL described here represent at least 19 loci polymorphic between Bay-0 and Shahdara; some may correspond to known genes from water/anion transport systems, while others clearly identify new genes controlling or interacting with water/anion absorption and accumulation. Interestingly, flowering-time genes probably play a role in the regulation of water content in our conditions.