A robust high-throughput single-nucleotide polymorphism (SNP) genotyping method is reported, which applies allele-specific extension to achieve allelic discrimination and uses matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to measure the natural molecular weight difference of oligonucleotides for determination of the base in a single-nucleotide polymorphic location. Tenfold PCR is performed successfully by carefully designing the primers and adjusting the conditions of PCR. In addition, two ways used for PCR product purification are compared and the matrix used in mass spectrometry for high-throughput oligonucleotide analysis is evaluated. The result here shows that the method is very effective and suitable for high-throughput genotyping of SNPs.