Aims: The cardiovascular complications of acquired immunodeficiency syndrome (AIDS) are serious, including the occurrence of pathological heart conditions such as cardiomyopathy. Chronic alcohol consumption accentuates the severity of AIDS and may contribute to the development of cardiomyopathy. The aim of this work was to use a proteomics approach to investigate global alterations in protein expression in a mouse model of AIDS in the presence or absence of chronic alcohol consumption.
Methods: Cardiac proteins were separated by two-dimensional polyacrylamide gel electrophoresis and quantitative computer analysis was used to evaluate the resulting two-dimensional protein profiles. Proteins that were differentially expressed in the hearts of mice from the different experimental groups were identified by peptide mass finger-printing by matrix-assisted laser desorption/ionization mass spectrometry.
Results: A number of specific proteins were observed to be differentially expressed in the mouse heart due to the effect of ethanol feeding alone. Differentially expressed proteins were also observed that were due to viral infection alone. Ethanol feeding and viral infection appeared to have similar effects on the expression of a number of proteins. A total of 24 proteins were altered by infection alone. Of these 24 proteins, eight were affected by alcohol, with six alterations being ameliorated and two being exacerbated by alcohol. Two of these proteins have been identified as the 27 kDa heat-shock protein and mitochondrial long-chain acyl-CoA thioesterase 1.
Conclusions: These results suggest that chronic alcohol consumption may exacerbate the effects of viral infection on the heart by lowering the stress response leading to de-protection and further cytotoxic effects.