Several viral proteins, including nucleocapsid protein, integrase, Vif, Tat, and Nef have been proposed to act as cofactors of HIV-1 reverse transcription. Using two viral RNA probes, one overlapping the primer-binding site (PBS) and the other representing the ribosomal frameshifting signal (FS) of HIV-1 RNA, we found that recombinant full-length Nef protein (NefLAI) increased the affinity of reverse transcriptase (RT) for RNA in vitro, and interacted directly with RT in protein co-precipitation assays. The effect on RT-RNA binding and the capacity of Nef to interact with RT was also observed with N-terminal deletion mutant NefDelta57 and NefSF2, although to a lesser level. NefDelta57 corresponded to the processed Nef protein present in the internal core of mature virions, and lacked the N-myristoylated N-terminus and N-terminal region implicated in virus infectivity and pathogenicity in vivo. NefSF2, a Nef allele from a highly pathogenic strain of HIV-1, differed from NefLAI by the amino acid sequence and immunoreactivity of its N-terminal domain. The effect observed with NefSF2 and NefDelta57, and data from phage biopanning experiments suggested that the RT-binding region in Nef involved the C-terminal flexible loop of its C-terminal domain, but the function in RT-RNA binding was also influenced by its N-terminal domain.