Chronic endothelin-1 treatment leads to insulin resistance in vivo

Diabetes. 2003 Aug;52(8):1904-9. doi: 10.2337/diabetes.52.8.1904.

Abstract

We determined whether chronic endothelin-1 (ET-1) treatment could lead to in vivo insulin resistance. Like insulin, ET-1 acutely stimulated glucose transport in isolated soleus muscle strips of WKY rats. ET-1 pretreatment (1 h) decreased insulin-stimulated glucose transport in muscle strips (-23%). Both ET-1-mediated effects were generated through ET(A) receptors, because a specific ET(A) receptor antagonist (BQ610) blocked these effects of ET-1. Osmotic minipumps were used to treat normal rats with ET-1 for 5 days. Subsequent hyperinsulinemic-euglycemic clamps showed that ET-1 treatment led to an approximately 30% decrease in insulin-stimulated glucose disposal rates in male and female rats. In addition, ex vivo study of soleus muscle strips showed decreased glucose transport into muscle from ET-1-treated animals. With respect to insulin signaling, chronic in vivo ET-1 treatment led to a 30-40% decrease in IRS-I protein content, IRS-I-associated p110(alpha), and AKT activation. In summary, 1) in vitro ET-1 pretreatment leads to decreased insulin-stimulated glucose transport in skeletal muscle strips; 2) chronic ET-1 administration in vivo leads to whole-body insulin resistance, with decreased skeletal muscle glucose transport and impaired insulin signaling; and 3) elevated ET-1 levels may be a cause of insulin resistance in certain pathophysiologic states.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Endothelin-1 / pharmacology*
  • Female
  • Glucose / pharmacokinetics
  • Hypoglycemic Agents / pharmacology
  • Insulin / pharmacology
  • Insulin Receptor Substrate Proteins
  • Insulin Resistance / physiology*
  • Male
  • Muscle, Skeletal / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoproteins / metabolism
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Rats
  • Rats, Inbred WKY
  • Signal Transduction / drug effects
  • Signal Transduction / physiology

Substances

  • Endothelin-1
  • Hypoglycemic Agents
  • Insulin
  • Insulin Receptor Substrate Proteins
  • Irs1 protein, rat
  • Phosphoproteins
  • Proto-Oncogene Proteins
  • Akt1 protein, rat
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Glucose