We have studied a fast inward current expressed in oocytes from one Xenopus laevis. This current was characterized as a sodium current. It was activated by depolarizations to -50 mV or higher, peaked within 3-5 ms, and then decayed following a mono-exponential timecourse. When clamped at different holding potentials, the current displayed voltage-dependent inactivation with a V0.5 of -51 mV. The channel responsible for this Na+ entry was blocked by tetrodotoxin with a K0.5 of 8 nM, and was resistant to block by lidocaine at concentrations up to 100 microM. The pharmacological similarities between neuronal and oocyte sodium channels suggest that the two channels share a conserved structure.