It is well established that members of the hedgehog family are involved in tissue patterning during development. We herein show that sonic hedgehog signaling molecules are differentially regulated by dopamine depletion in the basal ganglia of adult animals and specifically that sonic hedgehog levels are reduced in an animal model of Parkinson's disease. In addition, we show that sonic hedgehog protein inhibits electrical activity in the subthalamic nucleus, a key element of basal ganglia, within minutes of application. As the subthalamic nucleus is overactive in parkinsonism, we suggest that enhancement of sonic hedgehog signaling in the subthalamic nucleus may be of therapeutic value in Parkinson's disease.