The reactivity of the vascular wall to endothelin-1 (ET-1) is influenced by cholesterol, which is of possible importance for the progression of atherosclerosis. To elucidate signaling steps affected, the cholesterol acceptor methyl-beta-cyclodextrin (mbetacd, 10 mmol/L) was used to manipulate membrane cholesterol and disrupt caveolae in intact rat arteries. In endothelium-denuded caudal artery, contractile responsiveness to 10 nmol/L ET-1 (mediated by the ETA receptor) was reduced by mbetacd and increased by cholesterol. Neither ligand binding nor colocalization of ETA and caveolin-1 was affected by mbetacd. Ca2+ inflow via store-operated channels after depletion of intracellular Ca2+ stores was reduced in mbetacd-treated caudal arteries, as shown by Mn2+ quench rate and intracellular [Ca2+] response. Expression of TRPC1, 3, and 6 was detected by reverse transcriptase-polymerase chain reaction, and colocalization of TRPC1 with caveolin-1 was reduced by mbetacd, as seen by immunofluorescence. Part of the contractile response to ET-1 was inhibited by Ni2+ (0.5 mmol/L) and by a TRPC1 blocking antibody. In the basilar artery, exhibiting less store-operated channel activity than the caudal artery, ET-1-induced contractions were insensitive to the TRPC1 blocking antibody and to mbetacd. Increased store-operated channel activity in basilar arteries after organ culture correlated with increased sensitivity of ET-1 contraction to mbetacd. These results suggest that cholesterol influences vascular reactivity to ET-1 by affecting the caveolar localization of TRPC1.