Effects of Li(+) transport and Li(+) immobilization on Li(+)/Mg(2+) competition in cells: implications for bipolar disorder

Biochem Pharmacol. 2003 Nov 15;66(10):1915-24. doi: 10.1016/j.bcp.2003.07.001.

Abstract

Li(+)/Mg(2+) competition has been implicated in the therapeutic action of Li(+) treatment in bipolar illness. We hypothesized that this competition depended on cell-specific properties. To test this hypothesis, we determined the degree of Li(+) transport, immobilization, and Li(+)/Mg(2+) competition in lymphoblastomas, neuroblastomas, and erythrocytes. During a 50 mM/L Li(+)-loading incubation, Li(+) accumulation at 30 min (mmoles Li(+)/L cells) was the greatest in lymphoblastomas (11.1+/-0.3), followed by neuroblastomas (9.3+/-0.5), and then erythrocytes (4.0+/-0.5). Li(+) binding affinities to the plasma membrane in all three cell types were of the same order of magnitude; however, Li(+) immobilization in intact cells was greatest in neuroblastomas and least in erythrocytes. When cells were loaded for 30 min in a 50 mM/L Li(+)-containing medium, the percentage increase in free intracellular [Mg(2+)] in neuroblastoma and lymphoblastoma cells ( approximately 55 and approximately 52%, respectively) was similar, but erythrocytes did not exhibit any substantial increase ( approximately 6%). With the intracellular [Li(+)] at 15 mM/L, the free intracellular [Mg(2+)] increased by the greatest amount in neuroblastomas ( approximately 158%), followed by lymphoblastomas ( approximately 75%), and then erythrocytes ( approximately 50%). We conclude that Li(+) immobilization and transport are related to free intracellular [Mg(2+)] and to the extent of Li(+)/Mg(2+) competition in a cell-specific manner.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Binding, Competitive
  • Biological Transport
  • Bipolar Disorder / drug therapy
  • Bipolar Disorder / metabolism
  • Erythrocytes / metabolism*
  • Humans
  • Ion Transport / physiology*
  • Lithium / metabolism*
  • Lithium / therapeutic use
  • Magnesium / metabolism*
  • Neuroblastoma / pathology
  • Tumor Cells, Cultured

Substances

  • Lithium
  • Magnesium