A baculovirus-produced recombinant CEA (rCEA) protein comprising the extracellular region was used for vaccination of CRC patients with or without GM-CSF as an adjuvant cytokine. Ten patients with a significant proliferative T cell response against rCEA were selected for T cell epitope mapping. Fifteen-aa-long overlapping peptides covering the entire aa sequence of the external domain of CEA were used in a proliferation assay. In six of the patients a repeatable T cell response against at least one peptide was demonstrated. For the first time, nine functional HLA-DR epitopes of CEA were defined. Two of the peptides were recognized by more than one patient, i.e., two and three patients, respectively. Those 15-mer peptides that induced a proliferative T cell response fitted to the actual HLA-DR type (SYFPEITHI). The affinity of the native peptides for the T cell receptor was in the low to intermediate range (scores 6-19). The 15-mer peptides also contained 9-mer peptide sequences that could be predicted to bind to the actual HLA-ABC genotypes (SYFPEITHI/BIMAS). Blocking experiments using monoclonal antibodies indicated that the proliferative T cell response was both MHC class I and II restricted. The defined HLA-DR T cell epitopes were spread over the entire CEA molecule, but a higher frequency was noted towards the C-terminal. Peptides with a dual specificity may form a basis for production of subunit cancer vaccines, but modifications should be done to increase the T cell affinity, thereby optimizing the antitumoral effects of the vaccine.