Familial Alzheimer's disease (FAD) presenilin 1 (PS1) mutations give enhanced calcium responses upon different stimuli, attenuated capacitative calcium entry, an increased sensitivity of cells to undergo apoptosis, and increased gamma-secretase activity. We previously showed that the FAD mutation causing an exon 9 deletion in PS1 results in enhanced basal phospholipase C (PLC) activity (Cedazo-Minguez, A., Popescu, B. O., Ankarcrona, M., Nishimura, T., and Cowburn, R. F. (2002) J. Biol. Chem. 277, 36646-36655). To further elucidate the mechanisms by which PS1 interferes with PLC-calcium signaling, we studied the effect of two other FAD PS1 mutants (M146V and L250S) and two dominant negative PS1 mutants (D257A and D385N) on basal and carbachol-stimulated phosphoinositide (PI) hydrolysis and intracellular calcium concentrations ([Ca2+]i) in SH-SY5Y neuroblastoma cells. We found a significant increase in basal PI hydrolysis in PS1 M146V cells but not in PS1 L250S cells. Both PS1 M146V and PS1 L250S cells showed a significant increase in carbachol-induced [Ca2+]i as compared with nontransfected or wild type PS1 transfected cells. The elevated carbachol-induced [Ca2+]i signals were reversed by the PLC inhibitor neomycin, the ryanodine receptor antagonist dantrolene, the general aspartyl protease inhibitor pepstatin A, and the specific gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. The cells expressing either PS1 D257A or PS1 D385N had attenuated carbachol-stimulated PI hydrolysis and [Ca2+]i responses. In nontransfected or PS1 wild type transfected cells, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester and pepstatin A also attenuated both carbachol-stimulated PI hydrolysis and [Ca2+]i responses to levels found in PS1 D257A or PS1 D385N dominant negative cells. Our findings suggest that PS1 can regulate PLC activity and that this function is gamma-secretase activity-dependent.