Functional role of matrix metalloproteinases in ovarian tumor cell plasticity

Am J Obstet Gynecol. 2004 Apr;190(4):899-909. doi: 10.1016/j.ajog.2004.02.011.

Abstract

Objective: We previously demonstrated that aggressive ovarian cancer cells are able to display in vitro vasculogenic mimicry, which is reflected by their ability to form vasculogenic-like networks in 3-dimensional cultures and to express vascular cell-associated markers. The goal of this study was to examine the functional role of specific matrix metalloproteinases in the formation of vasculogenic-like networks and extracellular matrix remodeling in vitro. We also investigated the clinical relevance of matrix metalloproteinase-2 and -9 and membrane type 1-matrix metalloproteinase in human ovarian cancers with evidence of tumor cell-lined vasculature.

Study design: Ovarian cancer cells (A2780-PAR, SKOV3, and EG) were seeded onto separate 3-dimensional cultures that contained either Matrigel or type I collagen, in the absence of endothelial cells or fibroblasts. These cultures were treated with either chemically modified tetracycline-3 (general matrix metalloproteinase inhibitor), recombinant tissue inhibitor of metalloproteinase-1 or -2, or function-blocking antibodies to matrix metalloproteinase-2 or -9 or membrane type 1-matrix metalloproteinase. In addition, 78 invasive epithelial ovarian cancers were evaluated for expression of matrix metalloproteinase-2 and -9 and membrane type 1-matrix metalloproteinase and correlated with various clinical parameters.

Results: The aggressive ovarian cancer cells (SKOV3 and EG) were able to form in vitro vasculogenic-like networks and contract 3-dimensional collagen I gels, whereas the poorly aggressive A2780-PAR cell line did not. Chemically modified tetracycline-3 completely blocked the network formation. Blocking antibodies to matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase inhibited the formation of the vasculogenic-like networks and collagen gel contraction, but the antibody to matrix metalloproteinase-9 had no effect on network formation and minimal effect on gel contraction. Treatment of 3-dimensional cultures with tissue inhibitor of metalloproteinase-2 retarded the network formation and only small, partially developed structures were noted that did not form network connections. Tissue inhibitor of metalloproteinase-1 had no appreciable effect on the extent or efficiency of network formation. Human invasive ovarian cancers with evidence of tumor cell-lined vasculature were significantly more likely to have strong epithelial and stromal matrix metalloproteinase-2 and -9 and membrane type 1-matrix metalloproteinase expression (all probability values were <.05).

Conclusion: Matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase appear to play a key role in the development of vasculogenic-like networks and matrix remodeling by aggressive ovarian cancer cells. Human ovarian cancers with matrix metalloproteinase overexpression are more likely to have tumor cell-lined vasculature. These results may offer new insights for consideration in ovarian cancer treatment strategies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Cell Line, Tumor / enzymology
  • Female
  • Humans
  • Matrix Metalloproteinase 2 / metabolism*
  • Matrix Metalloproteinases, Membrane-Associated
  • Metalloendopeptidases / metabolism*
  • Middle Aged
  • Molecular Mimicry
  • Neoplasm Invasiveness
  • Neoplasm Staging
  • Neovascularization, Pathologic
  • Ovarian Neoplasms / enzymology*
  • Ovarian Neoplasms / pathology

Substances

  • Matrix Metalloproteinases, Membrane-Associated
  • Metalloendopeptidases
  • Matrix Metalloproteinase 2