Modeling scintillator-photodiodes as detectors for megavoltage CT

Med Phys. 2004 May;31(5):1225-34. doi: 10.1118/1.1710733.

Abstract

The use of cadmium tungstate (CdWO4) and cesium iodide [CsI(Tl)] scintillation detectors is studied in megavoltage computed tomography (MVCT). A model describing the signal acquired from a scintillation detector has been developed which contains two steps: (1) the calculation of the energy deposited in the crystal due to MeV photons using the EGSnrc Monte Carlo code; and (2) the transport of the optical photons generated in the crystal voxels to photodiodes using the optical Monte Carlo code DETECT2000. The measured detector signals in single CdWO4 and CsI(Tl) scintillation crystals of base 0.275 x 0.8 cm2 and heights 0.4, 1, 1.2, 1.6 and 2 cm were, generally, in good agreement with the signals calculated with the model. A prototype detector array which contains 8 CdWO4 crystals, each 0.275 x 0.8 x 1 cm3, in contact with a 16-element array of photodiodes was built. The measured attenuation of a Cobalt-60 beam as a function of solid water thickness behaves linearly. The frequency dependent modulation transfer function [MTF(f)], noise power spectrum [NPS(f)], and detective quantum efficiency [DQE(f)] were measured for 1.25 MeV photons (in a Cobalt-60 beam). For 6 MV photons, only the MTF(f) was measured from a linear accelerator, where large pulse-to-pulse fluctuations in the output of the linear accelerator did not allow the measurement of the NPS(f). A two-step Monte Carlo simulation was used to model the detector's MTF(f), NPS(f) and DQE(f). The DQE(0) of the detector array was found to be 26% and 19% for 1.25 MeV and 6 MV photons, respectively. For 1.25 MeV photons, the maximum discrepancies between the measured and modeled MTF(f), relative NPS(f) and the DQE(f) were found to be 1.5%, 1.2%, and 1.9%, respectively. For the 6 MV beam, the maximum discrepancy between the modeled and the measured MTF(f) was found to be 2.5%. The modeling is sufficiently accurate for designing appropriate detectors for MVCT.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer-Aided Design
  • Equipment Design
  • Equipment Failure Analysis
  • Models, Chemical*
  • Radiographic Image Interpretation, Computer-Assisted / instrumentation*
  • Radiometry / instrumentation*
  • Radiometry / methods
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / instrumentation*
  • Radiotherapy Planning, Computer-Assisted / methods
  • Scintillation Counting / instrumentation*
  • Scintillation Counting / methods
  • Semiconductors
  • Tomography, X-Ray Computed / methods*
  • Transducers*